Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle
A methodology for the design of small autonomous underwater vehicle propulsion systems has been developed and applied to the Virginia Tech 690 AUV. The methodology is novel in that it incorporates fast design level codes capable of predicting the viscous effects of low Reynolds number flow that is e...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/50398 |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-50398 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-503982020-09-29T05:40:27Z Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle Portner, Stephen Michael Aerospace and Ocean Engineering Neu, Wayne L. Woolsey, Craig A. Stilwell, Daniel J. Autonomous Underwater Vehicle Low Reynolds Number Propeller Propulsion A methodology for the design of small autonomous underwater vehicle propulsion systems has been developed and applied to the Virginia Tech 690 AUV. The methodology is novel in that it incorporates fast design level codes capable of predicting the viscous effects of low Reynolds number flow that is experienced by small, slow turning propellers. The methodology consists of determining the minimum induced loss lift distribution for the propeller via lifting line theory, efficient airfoil sections for the propeller via a coupled viscous-inviscid flow solver and optimization, brushless DC motor identification via ideal motor theory and total system efficiency estimates. The coupled viscous-inviscid flow solver showed low Reynolds number flow effects to be of critical importance in the propeller design. The original Virginia Tech 690 AUV propulsion system was analyzed yielding an experimental efficiency of 26.5%. A new propeller was designed based on low Reynolds number airfoil section data yielding an experimental efficiency of 42.7%. Finally, an entirely new propulsion system was designed using the methodology developed herein yielding a predicted efficiency of 57-60%. Master of Science 2014-08-21T08:00:12Z 2014-08-21T08:00:12Z 2014-08-20 Thesis vt_gsexam:3648 http://hdl.handle.net/10919/50398 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Autonomous Underwater Vehicle Low Reynolds Number Propeller Propulsion |
spellingShingle |
Autonomous Underwater Vehicle Low Reynolds Number Propeller Propulsion Portner, Stephen Michael Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle |
description |
A methodology for the design of small autonomous underwater vehicle propulsion systems has been developed and applied to the Virginia Tech 690 AUV. The methodology is novel in that it incorporates fast design level codes capable of predicting the viscous effects of low Reynolds number flow that is experienced by small, slow turning propellers. The methodology consists of determining the minimum induced loss lift distribution for the propeller via lifting line theory, efficient airfoil sections for the propeller via a coupled viscous-inviscid flow solver and optimization, brushless DC motor identification via ideal motor theory and total system efficiency estimates. The coupled viscous-inviscid flow solver showed low Reynolds number flow effects to be of critical importance in the propeller design. The original Virginia Tech 690 AUV propulsion system was analyzed yielding an experimental efficiency of 26.5%. A new propeller was designed based on low Reynolds number airfoil section data yielding an experimental efficiency of 42.7%. Finally, an entirely new propulsion system was designed using the methodology developed herein yielding a predicted efficiency of 57-60%. === Master of Science |
author2 |
Aerospace and Ocean Engineering |
author_facet |
Aerospace and Ocean Engineering Portner, Stephen Michael |
author |
Portner, Stephen Michael |
author_sort |
Portner, Stephen Michael |
title |
Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle |
title_short |
Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle |
title_full |
Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle |
title_fullStr |
Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle |
title_full_unstemmed |
Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle |
title_sort |
design of a low reynolds number propulsion system for an autonomous underwater vehicle |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/50398 |
work_keys_str_mv |
AT portnerstephenmichael designofalowreynoldsnumberpropulsionsystemforanautonomousunderwatervehicle |
_version_ |
1719344916011679744 |