Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (D...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/49436 |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-49436 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-494362020-09-29T05:43:12Z Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation Manning, Peter Christopher Mechanical Engineering Nelson, Douglas J. Baumann, William T. Leonessa, Alexander hybrid electric vehicle plug-in EV PHEV fuel consumption model-based design powertrain selection control system validation simulation software-in-the-loop hardware-in-the-loop The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP) of designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle, the selected powertrain is a Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV) with P2 (between engine and transmission) and P4 (rear axle) motors, a lithium-ion battery pack, an internal combustion engine, and an automatic transmission. Development of a charge sustaining control strategy for this vehicle involves coordination of controls for each of the main powertrain components through a distributed control strategy. This distributed control strategy includes component controllers for each individual component and a single supervisory controller responsible for interpreting driver demand and determining component commands to meet the driver demand safely and efficiently. For example, the algorithm accounts for a variety of system operating points and will penalize or reward certain operating points for other conditions. These conditions include but are not limited to rewards for discharging the battery when the state of charge (SOC) is above the target value or penalties for operating points with excessive emissions. Development of diagnostics and remedial actions is an important part of controlling the powertrain safely. In order to validate the control strategy prior to in-vehicle operation, simulations are run against a plant model of the vehicle systems. This plant model can be run in both controller Software- and controller Hardware-In-the-Loop (SIL and HIL) simulations. This paper details the development of the controls for diagnostics, major selection algorithms, and execution of commands and its integration into the Series-Parallel PHEV through the supervisory controller. This paper also covers the plant model development and testing of the control algorithms using controller SIL and HIL methods. This paper details reasons for any changes to the control system, and describes improvements or tradeoffs that had to be made to the control system architecture for the vehicle to run reliably and meet its target specifications. Test results illustrate how changes to the plant model and control code properly affect operation of the control system in the actual vehicle. The VT Malibu is operational and projected to perform well at the final competition. Master of Science 2014-07-10T08:01:21Z 2014-07-10T08:01:21Z 2014-07-09 Thesis vt_gsexam:3378 http://hdl.handle.net/10919/49436 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
hybrid electric vehicle plug-in EV PHEV fuel consumption model-based design powertrain selection control system validation simulation software-in-the-loop hardware-in-the-loop |
spellingShingle |
hybrid electric vehicle plug-in EV PHEV fuel consumption model-based design powertrain selection control system validation simulation software-in-the-loop hardware-in-the-loop Manning, Peter Christopher Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation |
description |
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is participating in the 2012-2014 EcoCAR 2: Plugging in to the Future Advanced Vehicle Technology Competition series organized by Argonne National Lab (ANL), and sponsored by General Motors Corporation (GM) and the U.S. Department of Energy (DOE). The goals of the competition are to reduce well-to-wheel (WTW) petroleum energy consumption (PEU), WTW greenhouse gas (GHG) and criteria emissions while maintaining vehicle performance, consumer acceptability and safety. Following the EcoCAR 2 Vehicle Development Process (VDP) of designing, building, and refining an advanced technology vehicle over the course of the three year competition using a 2013 Chevrolet Malibu donated by GM as a base vehicle, the selected powertrain is a Series-Parallel Plug-In Hybrid Electric Vehicle (PHEV) with P2 (between engine and transmission) and P4 (rear axle) motors, a lithium-ion battery pack, an internal combustion engine, and an automatic transmission.
Development of a charge sustaining control strategy for this vehicle involves coordination of controls for each of the main powertrain components through a distributed control strategy. This distributed control strategy includes component controllers for each individual component and a single supervisory controller responsible for interpreting driver demand and determining component commands to meet the driver demand safely and efficiently. For example, the algorithm accounts for a variety of system operating points and will penalize or reward certain operating points for other conditions. These conditions include but are not limited to rewards for discharging the battery when the state of charge (SOC) is above the target value or penalties for operating points with excessive emissions. Development of diagnostics and remedial actions is an important part of controlling the powertrain safely. In order to validate the control strategy prior to in-vehicle operation, simulations are run against a plant model of the vehicle systems. This plant model can be run in both controller Software- and controller Hardware-In-the-Loop (SIL and HIL) simulations.
This paper details the development of the controls for diagnostics, major selection algorithms, and execution of commands and its integration into the Series-Parallel PHEV through the supervisory controller. This paper also covers the plant model development and testing of the control algorithms using controller SIL and HIL methods. This paper details reasons for any changes to the control system, and describes improvements or tradeoffs that had to be made to the control system architecture for the vehicle to run reliably and meet its target specifications. Test results illustrate how changes to the plant model and control code properly affect operation of the control system in the actual vehicle. The VT Malibu is operational and projected to perform well at the final competition. === Master of Science |
author2 |
Mechanical Engineering |
author_facet |
Mechanical Engineering Manning, Peter Christopher |
author |
Manning, Peter Christopher |
author_sort |
Manning, Peter Christopher |
title |
Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation |
title_short |
Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation |
title_full |
Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation |
title_fullStr |
Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation |
title_full_unstemmed |
Development of a Series Parallel Energy Management Strategy for Charge Sustaining PHEV Operation |
title_sort |
development of a series parallel energy management strategy for charge sustaining phev operation |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/49436 |
work_keys_str_mv |
AT manningpeterchristopher developmentofaseriesparallelenergymanagementstrategyforchargesustainingphevoperation |
_version_ |
1719345731641278464 |