Double-Crop Soybean Vegetative Growth, Seed Yield, and Yield Component Response to Agronomic Inputs in the Mid-Atlantic, USA

Maximizing productivity and profitability are the primary reasons for double-cropping soybean with small grain in the Mid-Atlantic, USA. Reduced double-crop yield can be attributed to: delayed planting that results in a shortened growing season and less vegetative growth; later-maturing cultivars t...

Full description

Bibliographic Details
Main Author: Dillon, Kevin Alan
Other Authors: Crop and Soil Environmental Sciences
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/49380
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-49380
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-493802020-11-05T05:33:16Z Double-Crop Soybean Vegetative Growth, Seed Yield, and Yield Component Response to Agronomic Inputs in the Mid-Atlantic, USA Dillon, Kevin Alan Crop and Soil Environmental Sciences Holshouser, David L. Thomason, Wade E. Reiter, Mark S. Herbert, D. Ames Jr. soybean double-crop stem growth habit seeding rate nitrogen Bradyrhizobium japonicum foliar fungicide Maximizing productivity and profitability are the primary reasons for double-cropping soybean with small grain in the Mid-Atlantic, USA. Reduced double-crop yield can be attributed to: delayed planting that results in a shortened growing season and less vegetative growth; later-maturing cultivars that terminate main stem growth after flowering and have less growth and nodes; less soil moisture and plant-available nutrients due to small grain uptake; greater air and soil temperatures during vegetative stages that reduce early-season growth; and more favorable conditions for disease development during pod and seed formation. Field experiments were conducted in 2012 and 2013 in eastern Virginia to 1) evaluate cultivar stem growth habit, seeding rate, seed-applied inoculant, starter nitrogen (N) applied at planting, and foliar fungicide on soybean vegetative growth, total N uptake (TNU), seed yield and quality, and yield components; 2) determine the effect of starter N rate, applied with and without inoculant, on soybean vegetative growth, TNU, seed yield and quality, and yield components; and 3) evaluate the response of maturity group (MG) IV and V soybean cultivars to foliar fungicide. Greater seeding rates, inoculant, N, and fungicide typically were not required together to increase yield. Although cultivar interacted with other factors, early-maturing indeterminate 95Y01 yielded more than late-maturing determinate 95Y20 at 4 of 6 locations. Seeding rate interacted with other factors, but the greater seeding rate increased MG IV yield at 1 of 6 locations and decreased MG V yield at 2 of 6 locations. Starter N increased seed yield by 6 kg ha-1 per kg N applied until yield plateaued at 16 kg N ha-1, which continued to 31 kg N ha-1. When N rate was increased greater than 31 kg N ha-1, yield decreased. Fungicide increased yield for MG IV and V cultivars at 4 of 6 and 3 of 6 locations, respectively and prevented yield loss via mid- to late-season disease control, delayed leaf drop, and greater seed size. Optimum fungicide timing depended on environment and disease development. These data assisted in understanding agronomic inputs' combined or individual effects on double-crop soybean growth, canopy, N uptake, seed yield, and yield components. Ph. D. 2014-07-04T08:00:13Z 2014-07-04T08:00:13Z 2014-07-03 Dissertation vt_gsexam:3222 http://hdl.handle.net/10919/49380 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic soybean
double-crop
stem growth habit
seeding rate
nitrogen
Bradyrhizobium japonicum
foliar fungicide
spellingShingle soybean
double-crop
stem growth habit
seeding rate
nitrogen
Bradyrhizobium japonicum
foliar fungicide
Dillon, Kevin Alan
Double-Crop Soybean Vegetative Growth, Seed Yield, and Yield Component Response to Agronomic Inputs in the Mid-Atlantic, USA
description Maximizing productivity and profitability are the primary reasons for double-cropping soybean with small grain in the Mid-Atlantic, USA. Reduced double-crop yield can be attributed to: delayed planting that results in a shortened growing season and less vegetative growth; later-maturing cultivars that terminate main stem growth after flowering and have less growth and nodes; less soil moisture and plant-available nutrients due to small grain uptake; greater air and soil temperatures during vegetative stages that reduce early-season growth; and more favorable conditions for disease development during pod and seed formation. Field experiments were conducted in 2012 and 2013 in eastern Virginia to 1) evaluate cultivar stem growth habit, seeding rate, seed-applied inoculant, starter nitrogen (N) applied at planting, and foliar fungicide on soybean vegetative growth, total N uptake (TNU), seed yield and quality, and yield components; 2) determine the effect of starter N rate, applied with and without inoculant, on soybean vegetative growth, TNU, seed yield and quality, and yield components; and 3) evaluate the response of maturity group (MG) IV and V soybean cultivars to foliar fungicide. Greater seeding rates, inoculant, N, and fungicide typically were not required together to increase yield. Although cultivar interacted with other factors, early-maturing indeterminate 95Y01 yielded more than late-maturing determinate 95Y20 at 4 of 6 locations. Seeding rate interacted with other factors, but the greater seeding rate increased MG IV yield at 1 of 6 locations and decreased MG V yield at 2 of 6 locations. Starter N increased seed yield by 6 kg ha-1 per kg N applied until yield plateaued at 16 kg N ha-1, which continued to 31 kg N ha-1. When N rate was increased greater than 31 kg N ha-1, yield decreased. Fungicide increased yield for MG IV and V cultivars at 4 of 6 and 3 of 6 locations, respectively and prevented yield loss via mid- to late-season disease control, delayed leaf drop, and greater seed size. Optimum fungicide timing depended on environment and disease development. These data assisted in understanding agronomic inputs' combined or individual effects on double-crop soybean growth, canopy, N uptake, seed yield, and yield components. === Ph. D.
author2 Crop and Soil Environmental Sciences
author_facet Crop and Soil Environmental Sciences
Dillon, Kevin Alan
author Dillon, Kevin Alan
author_sort Dillon, Kevin Alan
title Double-Crop Soybean Vegetative Growth, Seed Yield, and Yield Component Response to Agronomic Inputs in the Mid-Atlantic, USA
title_short Double-Crop Soybean Vegetative Growth, Seed Yield, and Yield Component Response to Agronomic Inputs in the Mid-Atlantic, USA
title_full Double-Crop Soybean Vegetative Growth, Seed Yield, and Yield Component Response to Agronomic Inputs in the Mid-Atlantic, USA
title_fullStr Double-Crop Soybean Vegetative Growth, Seed Yield, and Yield Component Response to Agronomic Inputs in the Mid-Atlantic, USA
title_full_unstemmed Double-Crop Soybean Vegetative Growth, Seed Yield, and Yield Component Response to Agronomic Inputs in the Mid-Atlantic, USA
title_sort double-crop soybean vegetative growth, seed yield, and yield component response to agronomic inputs in the mid-atlantic, usa
publisher Virginia Tech
publishDate 2014
url http://hdl.handle.net/10919/49380
work_keys_str_mv AT dillonkevinalan doublecropsoybeanvegetativegrowthseedyieldandyieldcomponentresponsetoagronomicinputsinthemidatlanticusa
_version_ 1719355671616421888