Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback
LTE heterogeneous wireless networks promise significant increase in data rates and improved coverage through (i) the deployment of relays and cell densification, (ii) carrier aggregation to enhance bandwidth usage and (iii) by enabling nodes to have dual connectivity. These emerging cellular network...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/46725 |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-46725 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-467252020-09-29T05:33:50Z Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback Ahmad, Syed Amaar Electrical and Computer Engineering Silva, Luiz A. da Silva, Claudio R. C. M. MacKenzie, Allen B. Ball, Sheryl B. Yang, Yaling Heterogeneous networks End-to-end goals Power control Carrier aggregation Topology adaptations Dynamic Systems Dual Connectivity LTE heterogeneous wireless networks promise significant increase in data rates and improved coverage through (i) the deployment of relays and cell densification, (ii) carrier aggregation to enhance bandwidth usage and (iii) by enabling nodes to have dual connectivity. These emerging cellular networks are complex and large systems which are difficult to optimize with centralized control and where mobiles need to balance spectral efficiency, power consumption and fairness constraints. In this dissertation we focus on how decentralized and autonomous mobiles in multihop cellular systems can optimize their own local objectives by taking into account end-to-end or network-wide conditions. We propose several link-adaptive schemes where nodes can adjust their transmit power, aggregate carriers and select points of access to the network (relays and/or macrocell base stations) autonomously, based on both local and global conditions. Under our approach, this is achieved by disseminating the dynamic congestion level in the backhaul links of the points of access. As nodes adapt locally, the congestion levels in the backhaul links can change, which can in turn induce them to also change their adaptation objectives. We show that under our schemes, even with this dynamic congestion feedback, nodes can distributedly converge to a stable selection of transmit power levels and points of access. We also analytically derive the transmit power levels at the equilibrium points for certain cases. Moreover, through numerical results we show that the corresponding system throughput is significantly higher than when nodes adapt greedily following traditional link layer optimization objectives. Given the growing data rate demand, increasing system complexity and the difficulty of implementing centralized cross-layer optimization frameworks, our work simplifies resource allocation in heterogeneous cellular systems. Our work can be extended to any multihop wireless system where the backhaul link capacity is limited and feedback on the dynamic congestion levels at the access points is available. Ph. D. 2014-03-20T08:00:28Z 2014-03-20T08:00:28Z 2014-03-19 Dissertation vt_gsexam:2284 http://hdl.handle.net/10919/46725 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Heterogeneous networks End-to-end goals Power control Carrier aggregation Topology adaptations Dynamic Systems Dual Connectivity |
spellingShingle |
Heterogeneous networks End-to-end goals Power control Carrier aggregation Topology adaptations Dynamic Systems Dual Connectivity Ahmad, Syed Amaar Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback |
description |
LTE heterogeneous wireless networks promise significant increase in data rates and improved coverage through (i) the deployment of relays and cell densification, (ii) carrier aggregation to enhance bandwidth usage and (iii) by enabling nodes to have dual connectivity. These emerging cellular networks are complex and large systems which are difficult to optimize with centralized control and where mobiles need to balance spectral efficiency, power consumption and fairness constraints.
In this dissertation we focus on how decentralized and autonomous mobiles in multihop cellular systems can optimize their own local objectives by taking into account end-to-end or network-wide conditions. We propose several link-adaptive schemes where nodes can adjust their transmit power, aggregate carriers and select points of access to the network (relays and/or macrocell base stations) autonomously, based on both local and global conditions. Under our approach, this is achieved by disseminating the dynamic congestion level in the backhaul links of the points of access. As nodes adapt locally, the congestion levels in the backhaul links can change, which can in turn induce them to also change their adaptation objectives. We show that under our schemes, even with this dynamic congestion feedback, nodes can distributedly converge to a stable selection of transmit power levels and points of access. We also analytically derive the transmit power levels at the equilibrium points for certain cases. Moreover, through numerical results we show that the corresponding system throughput is significantly higher than when nodes adapt greedily following traditional link layer optimization objectives.
Given the growing data rate demand, increasing system complexity and the difficulty of implementing centralized cross-layer optimization frameworks, our work simplifies resource allocation in heterogeneous cellular systems. Our work can be extended to any multihop wireless system where the backhaul link capacity is limited and feedback on the dynamic congestion levels at the access points is available. === Ph. D. |
author2 |
Electrical and Computer Engineering |
author_facet |
Electrical and Computer Engineering Ahmad, Syed Amaar |
author |
Ahmad, Syed Amaar |
author_sort |
Ahmad, Syed Amaar |
title |
Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback |
title_short |
Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback |
title_full |
Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback |
title_fullStr |
Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback |
title_full_unstemmed |
Autonomous Link-Adaptive Schemes for Heterogeneous Networks with Congestion Feedback |
title_sort |
autonomous link-adaptive schemes for heterogeneous networks with congestion feedback |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/46725 |
work_keys_str_mv |
AT ahmadsyedamaar autonomouslinkadaptiveschemesforheterogeneousnetworkswithcongestionfeedback |
_version_ |
1719343748077322240 |