The automatic identification of aerospace acoustic sources

<p>This work describes the design of an intelligent recognition system used to distinguish noise signatures of five different acoustic sources. The system uses pattern recognition techniques to identify the information obtained from a single microphone. A training phase is used in which the...

Full description

Bibliographic Details
Main Author: Cabell, Randolph H.
Other Authors: Mechanical Engineering
Format: Others
Language:en
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/45932
http://scholar.lib.vt.edu/theses/available/etd-11212012-040018/
Description
Summary:<p>This work describes the design of an intelligent recognition system used to distinguish noise signatures of five different acoustic sources. The system uses pattern recognition techniques to identify the information obtained from a single microphone. A training phase is used in which the system learns to distinguish the sources and automatically selects features for optimal performance. Results were obtained by training the system to distinguish jet planes, propeller planes, a helicopter, train, and wind turbine from one another, then presenting similar sources to the system and recording the number of errors. These results indicate the system can successfully identify the trained sources based on acoustic information. Classification errors highlight the impact of the training sources on the system's ability to recognize different sources. </p> === Master of Science