Exhaust gas emissions from a prototype scrap tire incinerator/wastewater treatment plant sludge dryer

In conjunction with Atlantic Pacific Engineering and the Henry County Public Service Authority, Virginia Tech’s Environmental Engineering program measured the emissions from an experimental scrap tire incinerator/wastewater treatment plant sludge dryer. This report recounts the techniques used and t...

Full description

Bibliographic Details
Main Author: Tober, M. Lyn
Other Authors: Environmental Sciences and Engineering
Format: Others
Language:en
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/44484
http://scholar.lib.vt.edu/theses/available/etd-08292008-063306/
Description
Summary:In conjunction with Atlantic Pacific Engineering and the Henry County Public Service Authority, Virginia Tech’s Environmental Engineering program measured the emissions from an experimental scrap tire incinerator/wastewater treatment plant sludge dryer. This report recounts the techniques used and the results obtained during this testing. The Virginia Department of Environmental Quality supplied a list of pollutants of permitting interest which included a variety of criteria pollutants, toxics, and metals. Sampling for all the listed compounds required adherence to EPA Methods 5, 201A, 29, 0010, 0011, 0030, 6, 7D, 26A, and 18. Emissions testing transpired during the incinerator’s 72-hour test burn: 0800 October 30th to 0800 November 2nd, 1995. Due to time constraints, only part of one nonpotable water sampling series was completed rather than the proposed duplicate testing using both drying agents: nonpotable water and sludge. High particulate (57 lb/hr) and metal (21.4 lb/hr total) emissions indicate a fairly significant amount of air pollution control equipment will be necessary for a commercial plant. Both nitrogen oxides and sulfur dioxide had low emission rates: 1.73 lb/hr and 0.64 lb/hr, respectively, due to the nonpotable water spray acting as a fairly efficient scrubber removing a great deal of nitrogen oxides, sulfur dioxide, and some metals. Because of sample analysis preparation problems, no organics results were obtained. Commercial development of this incinerator will have to include a sizable quantity of air pollution control equipment: a $5 million plant will need approximately $1 million worth of control equipment. === Master of Science