Investigation of different approaches for identification and control of complex and nonlinear systems using neural networks
System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the systems. Most of the conventional techniques of system identification, in general, require some amount of a priori knowledge about the structure of the systems. Also, the...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/43160 http://scholar.lib.vt.edu/theses/available/etd-06112009-063450/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-43160 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-431602021-05-26T05:48:42Z Investigation of different approaches for identification and control of complex and nonlinear systems using neural networks Tripathi, Nishith D. Electrical Engineering LD5655.V855 1994.T757 Neural networks (Computer science) System identification System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the systems. Most of the conventional techniques of system identification, in general, require some amount of a priori knowledge about the structure of the systems. Also, they are only useful either with linear or linearized systems. There are numerous control principles working nicely in industry. However, they are less effective for MIMO systems or complex nonlinear systems. The need to control, in a better way, increasingly complex dynamical systems under significant uncertainty has made the need for new methods quite apparent. This thesis investigates different approaches for identification and control of complex nonlinear systems using neural networks. For system identification and control, ANN properties of generalization and their capability of extracting complex relationships among inputs presented to them are useful. Two different techniques, called whole region method (WRM) and the separate regions method (SRM) technique, have been developed and applied to two classes of nonlinear systems. Different connectionist control techniques such as adaptive control and neuro-PID control have been developed and applied to the robotic manipulators. Master of Science 2014-03-14T21:37:57Z 2014-03-14T21:37:57Z 1994 2009-06-11 2009-06-11 2009-06-11 Thesis Text etd-06112009-063450 http://hdl.handle.net/10919/43160 http://scholar.lib.vt.edu/theses/available/etd-06112009-063450/ en OCLC# 32457896 LD5655.V855_1994.T757.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ ix, 114 leaves BTD application/pdf application/pdf Virginia Tech |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
LD5655.V855 1994.T757 Neural networks (Computer science) System identification |
spellingShingle |
LD5655.V855 1994.T757 Neural networks (Computer science) System identification Tripathi, Nishith D. Investigation of different approaches for identification and control of complex and nonlinear systems using neural networks |
description |
System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the systems. Most of the conventional techniques of system identification, in general, require some amount of a priori knowledge about the structure of the systems. Also, they are only useful either with linear or linearized systems. There are numerous control principles working nicely in industry. However, they are less effective for MIMO systems or complex nonlinear systems. The need to control, in a better way, increasingly complex dynamical systems under significant uncertainty has made the need for new methods quite apparent. This thesis investigates different approaches for identification and control of complex nonlinear systems using neural networks. For system identification and control, ANN properties of generalization and their capability of extracting complex relationships among inputs presented to them are useful. Two different techniques, called whole region method (WRM) and the separate regions method (SRM) technique, have been developed and applied to two classes of nonlinear systems. Different connectionist control techniques such as adaptive control and neuro-PID control have been developed and applied to the robotic manipulators. === Master of Science |
author2 |
Electrical Engineering |
author_facet |
Electrical Engineering Tripathi, Nishith D. |
author |
Tripathi, Nishith D. |
author_sort |
Tripathi, Nishith D. |
title |
Investigation of different approaches for identification and control of complex and nonlinear systems using neural networks |
title_short |
Investigation of different approaches for identification and control of complex and nonlinear systems using neural networks |
title_full |
Investigation of different approaches for identification and control of complex and nonlinear systems using neural networks |
title_fullStr |
Investigation of different approaches for identification and control of complex and nonlinear systems using neural networks |
title_full_unstemmed |
Investigation of different approaches for identification and control of complex and nonlinear systems using neural networks |
title_sort |
investigation of different approaches for identification and control of complex and nonlinear systems using neural networks |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/43160 http://scholar.lib.vt.edu/theses/available/etd-06112009-063450/ |
work_keys_str_mv |
AT tripathinishithd investigationofdifferentapproachesforidentificationandcontrolofcomplexandnonlinearsystemsusingneuralnetworks |
_version_ |
1719406922455580672 |