Three-mode principal component analysis in designed experiments

This dissertation is concerned with the application of a method for decomposing multivariate data, three-mode principal component analysis, to a three-way table with one observation per cell. It is based on the class of multiplicative models for three-way tables (s x t x u) whose general form has ex...

Full description

Bibliographic Details
Main Author: See, Kyoungah
Other Authors: Statistics
Format: Others
Language:en
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/40079
http://scholar.lib.vt.edu/theses/available/etd-10212005-123018/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-40079
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-400792021-12-04T05:44:18Z Three-mode principal component analysis in designed experiments See, Kyoungah Statistics LD5655.V856 1993.S44 Multivariate analysis This dissertation is concerned with the application of a method for decomposing multivariate data, three-mode principal component analysis, to a three-way table with one observation per cell. It is based on the class of multiplicative models for three-way tables (s x t x u) whose general form has expectation E(y<sub>ijk</sub>) = μ + α<sub>i</sub> + β<sub>j</sub> + γ<sub>k</sub> + (αβ)<sub>ij</sub> + (αγ)<sub>ik</sub> + (βγ)<sub>jk</sub> + s Σ <sub>p=1</sub> t Σ <sub>q=1</sub> u Σ <sub>r=1</sub> c<sub>pqr</sub> g<sub>ip</sub> h<sub>jq</sub> e<sub>kr</sub>. The application is related to tests for nonadditivity in the two-way analysis of variance with noreplication. Three-factor interaction can be assessed for three-way cross classified tables with only one observation per treatment combination. This is done by partitioning the three-factor interaction sum of squares into a portion related to the interaction and a portion associated with random error. In particular, the estimated interaction matrix is decomposed by three-mode principal component analysis to separate significant interaction from random error. Three test procedures are presented for assessing interaction: randomization tests, Monte Carlo methods, and likelihood ratio tests. Examples illustrating the use of these approaches are presented. In addition to the above testing approaches, a graphical procedure, joint plots, is investigated for diagnosing the type of model to fit to three-way arrays of data. The plot is a multiway analogue of the biplot graphical analysis for two-way matrices. Each observation is represented by a linear combination of inner products of markers which are obtained from three-mode principal component analysis. The relationship between various models and the geometrical configurations of the plots on Euclidean spaces of such markers allows one to diagnose the type of model which fits the data. An example is given to illustrate the simplicity of the technique and the usefulness of this graphical approach in diagnosing models. Ph. D. 2014-03-14T21:21:57Z 2014-03-14T21:21:57Z 1993 2005-10-21 2005-10-21 2005-10-21 Dissertation Text etd-10212005-123018 http://hdl.handle.net/10919/40079 http://scholar.lib.vt.edu/theses/available/etd-10212005-123018/ en OCLC# 28528740 LD5655.V856_1993.S44.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ viii, 155 leaves BTD application/pdf application/pdf Virginia Tech
collection NDLTD
language en
format Others
sources NDLTD
topic LD5655.V856 1993.S44
Multivariate analysis
spellingShingle LD5655.V856 1993.S44
Multivariate analysis
See, Kyoungah
Three-mode principal component analysis in designed experiments
description This dissertation is concerned with the application of a method for decomposing multivariate data, three-mode principal component analysis, to a three-way table with one observation per cell. It is based on the class of multiplicative models for three-way tables (s x t x u) whose general form has expectation E(y<sub>ijk</sub>) = μ + α<sub>i</sub> + β<sub>j</sub> + γ<sub>k</sub> + (αβ)<sub>ij</sub> + (αγ)<sub>ik</sub> + (βγ)<sub>jk</sub> + s Σ <sub>p=1</sub> t Σ <sub>q=1</sub> u Σ <sub>r=1</sub> c<sub>pqr</sub> g<sub>ip</sub> h<sub>jq</sub> e<sub>kr</sub>. The application is related to tests for nonadditivity in the two-way analysis of variance with noreplication. Three-factor interaction can be assessed for three-way cross classified tables with only one observation per treatment combination. This is done by partitioning the three-factor interaction sum of squares into a portion related to the interaction and a portion associated with random error. In particular, the estimated interaction matrix is decomposed by three-mode principal component analysis to separate significant interaction from random error. Three test procedures are presented for assessing interaction: randomization tests, Monte Carlo methods, and likelihood ratio tests. Examples illustrating the use of these approaches are presented. In addition to the above testing approaches, a graphical procedure, joint plots, is investigated for diagnosing the type of model to fit to three-way arrays of data. The plot is a multiway analogue of the biplot graphical analysis for two-way matrices. Each observation is represented by a linear combination of inner products of markers which are obtained from three-mode principal component analysis. The relationship between various models and the geometrical configurations of the plots on Euclidean spaces of such markers allows one to diagnose the type of model which fits the data. An example is given to illustrate the simplicity of the technique and the usefulness of this graphical approach in diagnosing models. === Ph. D.
author2 Statistics
author_facet Statistics
See, Kyoungah
author See, Kyoungah
author_sort See, Kyoungah
title Three-mode principal component analysis in designed experiments
title_short Three-mode principal component analysis in designed experiments
title_full Three-mode principal component analysis in designed experiments
title_fullStr Three-mode principal component analysis in designed experiments
title_full_unstemmed Three-mode principal component analysis in designed experiments
title_sort three-mode principal component analysis in designed experiments
publisher Virginia Tech
publishDate 2014
url http://hdl.handle.net/10919/40079
http://scholar.lib.vt.edu/theses/available/etd-10212005-123018/
work_keys_str_mv AT seekyoungah threemodeprincipalcomponentanalysisindesignedexperiments
_version_ 1723963702671048704