Feedback design for nonlinear distributed-parameter systems by extended linearization
A feedback design procedure known as extended linearization consists in replacing a mathematical model of a nonlinear dynamical system with its family of linearizations, parametrized by the operating point, and then combining feedback gains designed for representatives of the family into a single no...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/39429 http://scholar.lib.vt.edu/theses/available/etd-09202005-091012/ |
Summary: | A feedback design procedure known as extended linearization consists in replacing a mathematical model of a nonlinear dynamical system with its family of linearizations, parametrized by the operating point, and then combining feedback gains designed for representatives of the family into a single nonlinear feedback law.
The principles of the procedure, applicable both to lumped-parameter and distributed-parameter systems, are discussed at the outset. The development shows limits on feedback laws that can be designed, as well as nonuniqueness of solutions, inherent in the method. === Ph. D. |
---|