Characterization and regulation of the speA gene in Escherichia coli
In Escherichia coli, the speA gene encodes biosynthetic arginine decarboxylase (ADC), the first enzyme in a putrescine biosynthetic pathway. ADC converts arginine to agmatine, which is hydrolyzed by agmatine ureohydrolase, encoded by the speB gene, to putrescine and urea. ADC is negatively regulated...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/39408 http://scholar.lib.vt.edu/theses/available/etd-09202005-090951/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-39408 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-394082021-12-01T05:43:15Z Characterization and regulation of the speA gene in Escherichia coli Moore, Robert C. Veterinary Medical Sciences Boyle, S. M. Dean, Dennis R. Johnson, John L. Lacy, George H. Larson, Timothy J. Sriranganathan, Nammalwar LD5655.V856 1990.M667 Escherichia coli Polyamines In Escherichia coli, the speA gene encodes biosynthetic arginine decarboxylase (ADC), the first enzyme in a putrescine biosynthetic pathway. ADC converts arginine to agmatine, which is hydrolyzed by agmatine ureohydrolase, encoded by the speB gene, to putrescine and urea. ADC is negatively regulated by mechanisms requiring either cAMP and cAMP receptor protein (CRP) or putrescine. A 3,236 base pair (bp) BalI-AccI restriction fragment derived from plasmid pKA5, which contains a 7.5 kilobase (kb) E. coli genomic fragment in pBR322, was subcloned into pGEM-3Z to produce plasmids pRM15 and pRM59. Both pRM15 and pRM59 overexpress ADC and the DNA sequence of the BalI-AccI fragment in each plasmid was determined. A 2,119 bp restriction fragment containing 730 bp 5’ to speA, the speA promoter, and 1,389 bp (463 amino acids) of the 5’-end of speA was used to construct transcriptional (pRM161 and pRM162) and translational (pRM65) speA-lacZ fusion plasmids. The presence of the predicted 160,000 and 157,000 dalton ADC Ph. D. 2014-03-14T21:19:04Z 2014-03-14T21:19:04Z 1990 2005-09-20 2005-09-20 2005-09-20 Dissertation Text etd-09202005-090951 http://hdl.handle.net/10919/39408 http://scholar.lib.vt.edu/theses/available/etd-09202005-090951/ en OCLC# 23663445 LD5655.V856_1990.M667.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ xi, 101 leaves BTD application/pdf application/pdf Virginia Tech |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
LD5655.V856 1990.M667 Escherichia coli Polyamines |
spellingShingle |
LD5655.V856 1990.M667 Escherichia coli Polyamines Moore, Robert C. Characterization and regulation of the speA gene in Escherichia coli |
description |
In Escherichia coli, the speA gene encodes biosynthetic arginine decarboxylase (ADC), the first enzyme in a putrescine biosynthetic pathway. ADC converts arginine to agmatine, which is hydrolyzed by agmatine ureohydrolase, encoded by the speB gene, to putrescine and urea. ADC is negatively regulated by mechanisms requiring either cAMP and cAMP receptor protein (CRP) or putrescine. A 3,236 base pair (bp) BalI-AccI restriction fragment derived from plasmid pKA5, which contains a 7.5 kilobase (kb) E. coli genomic fragment in pBR322, was subcloned into pGEM-3Z to produce plasmids pRM15 and pRM59. Both pRM15 and pRM59 overexpress ADC and the DNA sequence of the BalI-AccI fragment in each plasmid was determined. A 2,119 bp restriction fragment containing 730 bp 5’ to speA, the speA promoter, and 1,389 bp (463 amino acids) of the 5’-end of speA was used to construct transcriptional (pRM161 and pRM162) and translational (pRM65) speA-lacZ fusion plasmids. The presence of the predicted 160,000 and 157,000 dalton ADC === Ph. D. |
author2 |
Veterinary Medical Sciences |
author_facet |
Veterinary Medical Sciences Moore, Robert C. |
author |
Moore, Robert C. |
author_sort |
Moore, Robert C. |
title |
Characterization and regulation of the speA gene in Escherichia coli |
title_short |
Characterization and regulation of the speA gene in Escherichia coli |
title_full |
Characterization and regulation of the speA gene in Escherichia coli |
title_fullStr |
Characterization and regulation of the speA gene in Escherichia coli |
title_full_unstemmed |
Characterization and regulation of the speA gene in Escherichia coli |
title_sort |
characterization and regulation of the spea gene in escherichia coli |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/39408 http://scholar.lib.vt.edu/theses/available/etd-09202005-090951/ |
work_keys_str_mv |
AT moorerobertc characterizationandregulationofthespeageneinescherichiacoli |
_version_ |
1723963374907162624 |