Local properties of transitive quasi-uniform spaces
If (X,Ƭ) is a topological space, then a quasi-uniformity U on X is compatible with Ƭ if the quasi-uniform topology, Ƭ<sub>u</sub> = Ƭ. This paper is concerned with local properties of quasi-uniformities on a set X that are compatible with a given topology on X. Chapter II is devoted to...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/38605 http://scholar.lib.vt.edu/theses/available/etd-06122010-020732/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-38605 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-386052021-12-15T05:57:31Z Local properties of transitive quasi-uniform spaces Seyedin, Massood Mathematics LD5655.V856 1972.S48 Quasi-uniform spaces If (X,Ƭ) is a topological space, then a quasi-uniformity U on X is compatible with Ƭ if the quasi-uniform topology, Ƭ<sub>u</sub> = Ƭ. This paper is concerned with local properties of quasi-uniformities on a set X that are compatible with a given topology on X. Chapter II is devoted to the construction of Hausdorff completions of transitive quasi-uniform spaces that are members of the Pervin quasi-proximity class. Chapter III discusses locally complete, locally precompact, locally symmetric and locally transitive quasi-uniform spaces. Chapter IV is devoted to function spaces of quasi-uniform spaces. Chapter V and the Appendix are concerned with the topological homeomorphism groups of quasi-uniform spaces. Ph. D. 2014-03-14T21:15:01Z 2014-03-14T21:15:01Z 1972 2010-06-12 2010-06-12 2010-06-12 Dissertation Text etd-06122010-020732 http://hdl.handle.net/10919/38605 http://scholar.lib.vt.edu/theses/available/etd-06122010-020732/ en OCLC# 22466742 LD5655.V856_1972.S48.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ 64 leaves BTD application/pdf application/pdf Virginia Tech |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
LD5655.V856 1972.S48 Quasi-uniform spaces |
spellingShingle |
LD5655.V856 1972.S48 Quasi-uniform spaces Seyedin, Massood Local properties of transitive quasi-uniform spaces |
description |
If (X,Ƭ) is a topological space, then a quasi-uniformity U on X is compatible with Ƭ if the quasi-uniform topology, Ƭ<sub>u</sub> = Ƭ. This paper is concerned with local properties of quasi-uniformities on a set X that are compatible with a given topology on X.
Chapter II is devoted to the construction of Hausdorff completions of transitive quasi-uniform spaces that are members of the Pervin quasi-proximity class.
Chapter III discusses locally complete, locally precompact, locally symmetric and locally transitive quasi-uniform spaces.
Chapter IV is devoted to function spaces of quasi-uniform spaces.
Chapter V and the Appendix are concerned with the topological homeomorphism groups of quasi-uniform spaces. === Ph. D. |
author2 |
Mathematics |
author_facet |
Mathematics Seyedin, Massood |
author |
Seyedin, Massood |
author_sort |
Seyedin, Massood |
title |
Local properties of transitive quasi-uniform spaces |
title_short |
Local properties of transitive quasi-uniform spaces |
title_full |
Local properties of transitive quasi-uniform spaces |
title_fullStr |
Local properties of transitive quasi-uniform spaces |
title_full_unstemmed |
Local properties of transitive quasi-uniform spaces |
title_sort |
local properties of transitive quasi-uniform spaces |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/38605 http://scholar.lib.vt.edu/theses/available/etd-06122010-020732/ |
work_keys_str_mv |
AT seyedinmassood localpropertiesoftransitivequasiuniformspaces |
_version_ |
1723964663689904128 |