Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications
An impedance-based core loss measurement technique for power ferrites, the modeling and analysis of mechanisms of high-frequency losses, and design methodology for optimization for high-frequency magnetics are presented. The high-frequency losses of ferrite materials are characterized employing a...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/38366 http://scholar.lib.vt.edu/theses/available/etd-06062008-165934/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-38366 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-383662021-05-27T05:45:48Z Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications Gradzki, Pawel Miroslaw Electrical Engineering Lee, Fred C. Stephenson, F. William Chen, Dan Y. Cho, Bo H. Hendricks, Robert W. LD5655.V856 1992.G722 Electric inductors -- Design Electric transformers -- Design Ferrite devices -- Design Ferrites (Magnetic materials) Power electronics -- Materials An impedance-based core loss measurement technique for power ferrites, the modeling and analysis of mechanisms of high-frequency losses, and design methodology for optimization for high-frequency magnetics are presented. The high-frequency losses of ferrite materials are characterized employing a large-signal impedance measurement technique. The impedance analyzer controlled through an IEEE-488 interface, measures the impedance of the inductor under test under large signal excitation via a power amplifier. The core loss is a form of a parallel resistance is derived from measured impedance characteristics. A wideband impedance probe, enables core loss characterization up to 100 MHz. A comprehensive analysis of all major loss mechanisms in ferrites is presented. A new form of residual losses due to a magnetoelectric effect is postulated to account for losses at high frequencies. Two models of losses in ferrites are proposed, one with emphasis on analysis of loss mechanisms, and the other with an emphasis on the design of high-frequency magnetic components. Both models include the important effect of static bias field, which is the case in many power electronics applications. Magnetic losses due to magnetostriction are measured. Dependence of magnetoelastic resonances on the magnetic bias. core material, core shape and size is studied. The influence of diffusion after-effect on core loss under time-varying bias field is investigated. Thermal stability of high-frequency magnetics is studied. A verification of one- and two- dimensional models of winding losses for solid and litz wire is performed. The optimum design method for high-frequency power transformers and inductors is proposed. PhD 2014-03-14T21:14:03Z 2014-03-14T21:14:03Z 1992-03-30 2008-06-06 2008-06-06 2008-06-06 Dissertation Text etd-06062008-165934 http://hdl.handle.net/10919/38366 http://scholar.lib.vt.edu/theses/available/etd-06062008-165934/ en OCLC# 26145465 LD5655.V856_1992.G722.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ xii, 251 leaves BTD application/pdf application/pdf Virginia Tech |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
LD5655.V856 1992.G722 Electric inductors -- Design Electric transformers -- Design Ferrite devices -- Design Ferrites (Magnetic materials) Power electronics -- Materials |
spellingShingle |
LD5655.V856 1992.G722 Electric inductors -- Design Electric transformers -- Design Ferrite devices -- Design Ferrites (Magnetic materials) Power electronics -- Materials Gradzki, Pawel Miroslaw Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications |
description |
An impedance-based core loss measurement technique for power ferrites, the modeling and analysis of mechanisms of high-frequency losses, and design methodology for optimization for high-frequency magnetics are presented.
The high-frequency losses of ferrite materials are characterized employing a large-signal impedance measurement technique. The impedance analyzer controlled through an IEEE-488 interface, measures the impedance of the inductor under test under large signal excitation via a power amplifier. The core loss is a form of a parallel resistance is derived from measured impedance characteristics. A wideband impedance probe, enables core loss characterization up to 100 MHz.
A comprehensive analysis of all major loss mechanisms in ferrites is presented. A new form of residual losses due to a magnetoelectric effect is postulated to account for losses at high frequencies. Two models of losses in ferrites are proposed, one with emphasis on analysis of loss mechanisms, and the other with an emphasis on the design of high-frequency magnetic components. Both models include the important effect of static bias field, which is the case in many power electronics applications. Magnetic losses due to magnetostriction are measured. Dependence of magnetoelastic resonances on the magnetic bias. core material, core shape and size is studied. The influence of diffusion after-effect on core loss under time-varying bias field is investigated.
Thermal stability of high-frequency magnetics is studied. A verification of one- and two- dimensional models of winding losses for solid and litz wire is performed. The optimum design method for high-frequency power transformers and inductors is proposed. === PhD |
author2 |
Electrical Engineering |
author_facet |
Electrical Engineering Gradzki, Pawel Miroslaw |
author |
Gradzki, Pawel Miroslaw |
author_sort |
Gradzki, Pawel Miroslaw |
title |
Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications |
title_short |
Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications |
title_full |
Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications |
title_fullStr |
Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications |
title_full_unstemmed |
Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications |
title_sort |
core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/38366 http://scholar.lib.vt.edu/theses/available/etd-06062008-165934/ |
work_keys_str_mv |
AT gradzkipawelmiroslaw corelosscharacterizationanddesignoptimizationofhighfrequencypowerferritedevicesinpowerelectronicsapplications |
_version_ |
1719407558226083840 |