Dielectric relaxation behavior of poly(3-hydroxybutyrate)
The importance of Poly(3-hydroxybutyrate) (PHB) as a biodegradable material is well known. Due to ever increasing environmental awareness, significant efforts have been made to utilize PHB or its derivatives in producing disposable products. However, brittle mechanical properties of PHB hinder the d...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/38235 http://scholar.lib.vt.edu/theses/available/etd-06062008-163615/ |
Summary: | The importance of Poly(3-hydroxybutyrate) (PHB) as a biodegradable material is well known. Due to ever increasing environmental awareness, significant efforts have been made to utilize PHB or its derivatives in producing disposable products. However, brittle mechanical properties of PHB hinder the direct application of this material in useful commodity items. In order to achieve toughened PHB, blending with other polymers which possess high relaxation behavior at room temperature seems attractive. Prior to such development, the fundamental characterization of the relaxation behavior of PHB itself is extremely important in order to assess the effect of any attempt to improve the situation in a quantitative manner.
Dielectric thermal analysis was used in the study of the relaxation behavior of melt processed PHB. The approach was largely phenomenological, that was, based on the macroscopic theory of dielectric relaxation. The mean relaxation time of melt processed PHB was evaluated while PHB was undergoing crystallization at room temperature. The experimental conditions were kept as close as possible to actual shelf-life conditions. Dynamic temperature sweep experiments revealed multiple relaxation peaks at the glass transition region. Temperature plane curve resolution revealed, in the early stage of crystallization, two dynamically changing peaks whose behaviors, as the extent of crystallization progressed, were quite opposite in terms of the magnitude of the loss property. By analyzing the temperature dependence of loss property and mean relaxation time, it was concluded that the peak located at the lower temperature is related to pure amorphous chain movement, and the peak located at the higher temperature is related to the movement of amorphous chains which are confined in-between crystalline phases, such as lamellae and spherulites. For the evaluation of the mean relaxation time of binary blends or multiple relaxations arising from homopolymers and copolymers, an empirical model has been developed which is grounded in the theory of linear viscoelasticity with the aim of quantitatively assessing the effect of attempts to improve the toughness of PHB. In the course of data reduction and model development, the majority of empirical dielectric relaxation functions has been reviewed including the Havriliak-Negami model and the Kohlrausch-Williams-Watts stretched exponential function. It was found that the center of relaxation time in the Havriliak-Negami model was skewed toward short time scale of relaxation, while mean relaxation time reflected the relaxation behavior of PHB chains on average, including movement of chains which relax with difficulty as the extent of crystallization progresses. === Ph. D. |
---|