Modeling Flows for Assessing Tidal Energy Generation Potential

Tidal energy is a clean, sustainable, reliable, predictable source of energy. Recent developments in underwater turbines have made harvesting tidal energy feasible. Determining the power potential available in a given water body can be accomplished by using numerical hydraulic models to predict th...

Full description

Bibliographic Details
Main Author: Spurlock, Derek Scott
Other Authors: Civil Engineering
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/35140
http://scholar.lib.vt.edu/theses/available/etd-09212008-134411/
Description
Summary:Tidal energy is a clean, sustainable, reliable, predictable source of energy. Recent developments in underwater turbines have made harvesting tidal energy feasible. Determining the power potential available in a given water body can be accomplished by using numerical hydraulic models to predict the flow velocity at a location of interest. The East River in Manhattan has been used here in an effort to develop a modeling methodology for assessing the power potential of a site. Two two-dimensional CFD models, FESWMS and TUFLOW, as well as one one-dimensional model, HEC-RAS, are used to analyze flows in the East River. Comparisons are made between the models and TUFLOW proves to best represent flows in the East River. HEC-RAS provides accurate results; however, the one-dimensional results lack the necessary detail of a two-dimensional model. FESWMS cannot produce results that mimic actual flow conditions in the East River. Using the TUFLOW model, power and energy estimates are made. These estimates show that a two-dimensional model, such as TUFLOW, can be a great tool for engineers and planners developing tidal energy projects. Using the results of this work, a methodology is developed to assess power potential at other sites using publicly available data. === Master of Science