Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis

<p>Sulfur-containing compounds such as thiamin, biotin, molybdopterin, lipoic acid, and [Fe-S] clusters are essential for life. Sulfurtransferases are present in eukaryotes, eubacteria, and archaea and are believed to play important roles in mobilizing sulfur necessary for biosynthesis of the...

Full description

Bibliographic Details
Main Author: Hunt, Jeremy Paul
Other Authors: Biochemistry
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/34714
http://scholar.lib.vt.edu/theses/available/etd-08232004-124409/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-34714
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-347142020-09-26T05:35:15Z Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis Hunt, Jeremy Paul Biochemistry Larson, Timothy J. Dean, Dennis R. Winkel, Brenda S. J. disulfide cross-linking YrkF rhodanese Ccd1 persulfide sulfur <p>Sulfur-containing compounds such as thiamin, biotin, molybdopterin, lipoic acid, and [Fe-S] clusters are essential for life. Sulfurtransferases are present in eukaryotes, eubacteria, and archaea and are believed to play important roles in mobilizing sulfur necessary for biosynthesis of these compounds and for normal cellular functions. The rhodanese homology domain is a ubiquitous structural module containing a characteristic active site cysteine residue. Some proteins containing a rhodanese domain display thiosulfate:cyanide sulfurtransferase activity in vitro. However, the physiological functions of rhodaneses remain largely unknown.</p><p> YrkF, the first rhodanese to be characterized from Bacillus subtilis, is a unique protein containing two domains, an N-terminal Ccd1 domain and a C-terminal rhodanese domain. Ccd1 (conserved cysteine domain 1) is a ubiquitous structural module characterized by a Cys-Pro-X-Pro sequence motif. Thus, YrkF contains two cysteine residues (Cys<sup>15</sup> and Cys<sup>149</sup>), one in each domain. </p><p> Biochemical, genetic, and bioinformatic approaches were used in order to characterize YrkF. First, YrkF was overexpressed and assayed for rhodanese activity to show that the protein is a functional rhodanese. A variant protein, YrkF<sup>C15A</sup>, containing a cysteine to alanine substitution in the Ccd1 domain was created to determine if the Ccd1 cysteine is essential for rhodanese activity. The variant protein was overexpressed and rhodanese assays showed that YrkF<sup>C15A</sup> is also a functional rhodanese. </p><p> Inherent structural and catalytic differences were observed when comparing YrkF and YrkF<sup>C15A</sup>, which may reflect the importance of the Ccd1 cysteine residue to normal enzymatic function and structural stability. Initial kinetic studies identified differences in activity between YrkF and YrkF<sup>C15A</sup>. Cross-linking experiments showed a propensity for the formation of inter- and intramolecular disulfide bonds between the two cysteine residues and indicated that Cys<sup>15</sup> and Cys<sup>149</sup> are located near one another in the 3-dimensional structure of the protein. Analysis of the proteins by mass spectrometry suggested YrkF contains a stable persulfide sulfur, whereas YrkF<sup>C15A</sup> showed no evidence of a stable persulfide sulfur and was prone to oxidation and other active site modifications. A homology model of YrkF was created using structures of a rhodanese homolog and a Ccd1 homolog as templates. The model was used to predict the structure of YrkF based on the results of the cross-linking experiments. A strain containing a yrkF chromosomal deletion could be constructed, indicating YrkF is not essential for survival. Phenotypic analysis of the yrkF mutant revealed that YrkF is not needed for biosynthesis of sulfur-containing cofactors (thiamin, biotin, molybdopterin, or lipoic acid) or amino acids. The characterization of YrkF could lead to the discovery of novel physiological roles for rhodaneses and may give insight into possible roles for the Ccd1 module.</p> Master of Science 2014-03-14T20:44:03Z 2014-03-14T20:44:03Z 2004-08-11 2004-08-23 2004-08-25 2004-08-25 Thesis etd-08232004-124409 http://hdl.handle.net/10919/34714 http://scholar.lib.vt.edu/theses/available/etd-08232004-124409/ JHthesis.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic disulfide cross-linking
YrkF
rhodanese
Ccd1
persulfide sulfur
spellingShingle disulfide cross-linking
YrkF
rhodanese
Ccd1
persulfide sulfur
Hunt, Jeremy Paul
Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis
description <p>Sulfur-containing compounds such as thiamin, biotin, molybdopterin, lipoic acid, and [Fe-S] clusters are essential for life. Sulfurtransferases are present in eukaryotes, eubacteria, and archaea and are believed to play important roles in mobilizing sulfur necessary for biosynthesis of these compounds and for normal cellular functions. The rhodanese homology domain is a ubiquitous structural module containing a characteristic active site cysteine residue. Some proteins containing a rhodanese domain display thiosulfate:cyanide sulfurtransferase activity in vitro. However, the physiological functions of rhodaneses remain largely unknown.</p><p> YrkF, the first rhodanese to be characterized from Bacillus subtilis, is a unique protein containing two domains, an N-terminal Ccd1 domain and a C-terminal rhodanese domain. Ccd1 (conserved cysteine domain 1) is a ubiquitous structural module characterized by a Cys-Pro-X-Pro sequence motif. Thus, YrkF contains two cysteine residues (Cys<sup>15</sup> and Cys<sup>149</sup>), one in each domain. </p><p> Biochemical, genetic, and bioinformatic approaches were used in order to characterize YrkF. First, YrkF was overexpressed and assayed for rhodanese activity to show that the protein is a functional rhodanese. A variant protein, YrkF<sup>C15A</sup>, containing a cysteine to alanine substitution in the Ccd1 domain was created to determine if the Ccd1 cysteine is essential for rhodanese activity. The variant protein was overexpressed and rhodanese assays showed that YrkF<sup>C15A</sup> is also a functional rhodanese. </p><p> Inherent structural and catalytic differences were observed when comparing YrkF and YrkF<sup>C15A</sup>, which may reflect the importance of the Ccd1 cysteine residue to normal enzymatic function and structural stability. Initial kinetic studies identified differences in activity between YrkF and YrkF<sup>C15A</sup>. Cross-linking experiments showed a propensity for the formation of inter- and intramolecular disulfide bonds between the two cysteine residues and indicated that Cys<sup>15</sup> and Cys<sup>149</sup> are located near one another in the 3-dimensional structure of the protein. Analysis of the proteins by mass spectrometry suggested YrkF contains a stable persulfide sulfur, whereas YrkF<sup>C15A</sup> showed no evidence of a stable persulfide sulfur and was prone to oxidation and other active site modifications. A homology model of YrkF was created using structures of a rhodanese homolog and a Ccd1 homolog as templates. The model was used to predict the structure of YrkF based on the results of the cross-linking experiments. A strain containing a yrkF chromosomal deletion could be constructed, indicating YrkF is not essential for survival. Phenotypic analysis of the yrkF mutant revealed that YrkF is not needed for biosynthesis of sulfur-containing cofactors (thiamin, biotin, molybdopterin, or lipoic acid) or amino acids. The characterization of YrkF could lead to the discovery of novel physiological roles for rhodaneses and may give insight into possible roles for the Ccd1 module.</p> === Master of Science
author2 Biochemistry
author_facet Biochemistry
Hunt, Jeremy Paul
author Hunt, Jeremy Paul
author_sort Hunt, Jeremy Paul
title Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis
title_short Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis
title_full Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis
title_fullStr Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis
title_full_unstemmed Genetic and biochemical characterization of YrkF, a novel two-domain sulfurtransferase in Bacillus subtilis
title_sort genetic and biochemical characterization of yrkf, a novel two-domain sulfurtransferase in bacillus subtilis
publisher Virginia Tech
publishDate 2014
url http://hdl.handle.net/10919/34714
http://scholar.lib.vt.edu/theses/available/etd-08232004-124409/
work_keys_str_mv AT huntjeremypaul geneticandbiochemicalcharacterizationofyrkfanoveltwodomainsulfurtransferaseinbacillussubtilis
_version_ 1719342019321528320