Carboxymethylcellulose Acetate Butyrate Water-Dispersions as Renewable Wood Adhesives

Two commercial carboxymethylcellulose acetate butyrate (CMCAB) polymers, high and low molecular weight (MW) forms, were analyzed in this study. High-solids water-borne dispersions of these polymers were studied as renewable wood adhesives. Neat polymer analyses revealed that the apart from MW, the C...

Full description

Bibliographic Details
Main Author: Paris, Jesse Loren
Other Authors: Wood Science and Forest Products
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/34644
http://scholar.lib.vt.edu/theses/available/etd-08192010-124830/
Description
Summary:Two commercial carboxymethylcellulose acetate butyrate (CMCAB) polymers, high and low molecular weight (MW) forms, were analyzed in this study. High-solids water-borne dispersions of these polymers were studied as renewable wood adhesives. Neat polymer analyses revealed that the apart from MW, the CMCAB systems had different acid values, and that the high MW system was compromised with gel particle contaminants. Formulation of the polymer into water-dispersions was optimized for this study, and proved the â direct methodâ , in which all formulation components were mixed at once in a sealed vessel, was the most efficient preparation technique. Applying this method, 4 high-solids water dispersions were prepared and evaluated with viscometry, differential scanning calorimetry, dynamic mechanical analysis, light and fluorescence microscopy, and mode I fracture testing. Thermal analyses showed that the polymer glass transition temperature significantly increased when bonded to wood. CMCAB dispersions produced fairly brittle adhesive-joints; however, it is believed toughness can likely be improved with further formulation optimization. Lastly, dispersion viscosity, film formation, adhesive penetration and joint-performance were all dependent on the formulation solvents, and moreover, these properties appeared to correlate with each other. === Master of Science