Measuring Energy Efficiency of Water Utilities
Water infrastructure systems worldwide use large amounts of energy to operate. Energy efficiency efforts are relevant because even relatively small gains in efficiency have the potential to bring significant benefits to these utilities in terms of financial savings and enhanced sustainability and re...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/34231 http://scholar.lib.vt.edu/theses/available/etd-07282009-141002/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-34231 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-342312020-09-26T05:37:06Z Measuring Energy Efficiency of Water Utilities Gay Alanis, Leon F. Civil Engineering Sinha, Sunil Kumar Edwards, Marc A. Cornelius, Christopher J. minimum energy requirements benchmarking energy efficiency head loss Water infrastructure systems worldwide use large amounts of energy to operate. Energy efficiency efforts are relevant because even relatively small gains in efficiency have the potential to bring significant benefits to these utilities in terms of financial savings and enhanced sustainability and resiliency. In order to achieve higher efficiency levels, energy usage must be measured and controlled. A common tool used to measure energy efficiency in water utilities and perform comparisons between utilities is metric benchmarking. Energy benchmarking scores are intended to measure how efficient water systems are among their peers, in a simple and accurate fashion. Although many different benchmarking methods are currently used, we chose to use the segregated benchmarking scores proposed by Carlson on his research report from 2007 (Carlson, 2007). The research objective is to improve these production energy use and treatment energy use benchmarking scores by analyzing the systemâ s particular characteristics that might skew the results, such as topology, water loss and raw water quality. We propose that benchmarking metrics should be always used within a particular context for each specific utility being analyzed. A complementary score (Thermodynamic Score) was developed to provide context on how energy efficient is the utility not only compared with other utilities, but also compared with the potential maximum efficiency the utility can reach itself. We analyzed eight utilities from Virginia to obtain production and treatment energy use benchmarking scores and also thermodynamic scores using the minimum required energy approach. Benchmarking scores were skewed in 50% of the studied utilities. This means that benchmarking scores should never be used as a black box. The thermodynamic score proved to be useful for measurement of energy efficiency of a water utility on its production phase. In addition, some utilities can detect significant financial saving opportunities using the minimum required energy analysis for production operations. Master of Science 2014-03-14T20:42:10Z 2014-03-14T20:42:10Z 2009-07-06 2009-07-28 2009-08-19 2009-08-19 Thesis etd-07282009-141002 http://hdl.handle.net/10919/34231 http://scholar.lib.vt.edu/theses/available/etd-07282009-141002/ MSThesisRev.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
minimum energy requirements benchmarking energy efficiency head loss |
spellingShingle |
minimum energy requirements benchmarking energy efficiency head loss Gay Alanis, Leon F. Measuring Energy Efficiency of Water Utilities |
description |
Water infrastructure systems worldwide use large amounts of energy to operate. Energy efficiency efforts are relevant because even relatively small gains in efficiency have the potential to bring significant benefits to these utilities in terms of financial savings and enhanced sustainability and resiliency. In order to achieve higher efficiency levels, energy usage must be measured and controlled.
A common tool used to measure energy efficiency in water utilities and perform comparisons between utilities is metric benchmarking. Energy benchmarking scores are intended to measure how efficient water systems are among their peers, in a simple and accurate fashion. Although many different benchmarking methods are currently used, we chose to use the segregated benchmarking scores proposed by Carlson on his research report from 2007 (Carlson, 2007).
The research objective is to improve these production energy use and treatment energy use benchmarking scores by analyzing the systemâ s particular characteristics that might skew the results, such as topology, water loss and raw water quality. We propose that benchmarking metrics should be always used within a particular context for each specific utility being analyzed. A complementary score (Thermodynamic Score) was developed to provide context on how energy efficient is the utility not only compared with other utilities, but also compared with the potential maximum efficiency the utility can reach itself.
We analyzed eight utilities from Virginia to obtain production and treatment energy use benchmarking scores and also thermodynamic scores using the minimum required energy approach. Benchmarking scores were skewed in 50% of the studied utilities. This means that benchmarking scores should never be used as a black box. The thermodynamic score proved to be useful for measurement of energy efficiency of a water utility on its production phase. In addition, some utilities can detect significant financial saving opportunities using the minimum required energy analysis for production operations. === Master of Science |
author2 |
Civil Engineering |
author_facet |
Civil Engineering Gay Alanis, Leon F. |
author |
Gay Alanis, Leon F. |
author_sort |
Gay Alanis, Leon F. |
title |
Measuring Energy Efficiency of Water Utilities |
title_short |
Measuring Energy Efficiency of Water Utilities |
title_full |
Measuring Energy Efficiency of Water Utilities |
title_fullStr |
Measuring Energy Efficiency of Water Utilities |
title_full_unstemmed |
Measuring Energy Efficiency of Water Utilities |
title_sort |
measuring energy efficiency of water utilities |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/34231 http://scholar.lib.vt.edu/theses/available/etd-07282009-141002/ |
work_keys_str_mv |
AT gayalanisleonf measuringenergyefficiencyofwaterutilities |
_version_ |
1719342372033134592 |