Development and Acceleration of Parallel Chemical Transport Models

Improving chemical transport models for atmospheric simulations relies on future developments of mathematical methods and parallelization methods. Better mathematical methods allow simulations to more accurately model realistic processes and/or to run in a shorter amount of time. Parellization metho...

Full description

Bibliographic Details
Main Author: Eller, Paul Ray
Other Authors: Computer Science
Format: Others
Published: Virginia Tech 2014
Subjects:
KPP
GPU
Online Access:http://hdl.handle.net/10919/34044
http://scholar.lib.vt.edu/theses/available/etd-07172009-171608/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-34044
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-340442020-09-26T05:35:46Z Development and Acceleration of Parallel Chemical Transport Models Eller, Paul Ray Computer Science Sandu, Adrian Ribbens, Calvin J. Nikolopoulos, Dimitrios S. KPP GEOS-Chem STEM Parallelization GPU CUDA Improving chemical transport models for atmospheric simulations relies on future developments of mathematical methods and parallelization methods. Better mathematical methods allow simulations to more accurately model realistic processes and/or to run in a shorter amount of time. Parellization methods allow simulations to run in much shorter amounts of time, therefore allowing scientists to use more accurate or more detailed simulations (higher resolution grids, smaller time steps). <p> The state-of-the-science GEOS-Chem model is modified to use the Kinetic Pre-Processor, giving users access to an array of highly efficient numerical integration methods and to a wide variety of user options. Perl parsers are developed to interface GEOS-Chem with KPP in addition to modifications to KPP allowing KPP integrators to interface with GEOS-Chem. A variety of different numerical integrators are tested on GEOS-Chem, demonstrating that KPP provided chemical integrators produce more accurate solutions in a given amount of time than the original GEOS-Chem chemical integrator. <p> The STEM chemical transport model provides a large scale end-to-end application to experiment with running chemical integration methods and transport methods on GPUs. GPUs provide high computational power at a fairly cheap cost. The CUDA programming environment simplifies the GPU development process by providing access to powerful functions to execute parallel code. This work demonstrates the accleration of a large scale end-to-end application on GPUs showing significant speedups. This is achieved by implementing all relevant kernels on the GPU using CUDA. Nevertheless, further improvements to GPUs are needed to allow these applications to fully exploit the power of GPUs. Master of Science 2014-03-14T20:41:35Z 2014-03-14T20:41:35Z 2009-07-14 2009-07-17 2009-08-03 2009-08-03 Thesis etd-07172009-171608 http://hdl.handle.net/10919/34044 http://scholar.lib.vt.edu/theses/available/etd-07172009-171608/ Paul_Eller_Thesis.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic KPP
GEOS-Chem
STEM
Parallelization
GPU
CUDA
spellingShingle KPP
GEOS-Chem
STEM
Parallelization
GPU
CUDA
Eller, Paul Ray
Development and Acceleration of Parallel Chemical Transport Models
description Improving chemical transport models for atmospheric simulations relies on future developments of mathematical methods and parallelization methods. Better mathematical methods allow simulations to more accurately model realistic processes and/or to run in a shorter amount of time. Parellization methods allow simulations to run in much shorter amounts of time, therefore allowing scientists to use more accurate or more detailed simulations (higher resolution grids, smaller time steps). <p> The state-of-the-science GEOS-Chem model is modified to use the Kinetic Pre-Processor, giving users access to an array of highly efficient numerical integration methods and to a wide variety of user options. Perl parsers are developed to interface GEOS-Chem with KPP in addition to modifications to KPP allowing KPP integrators to interface with GEOS-Chem. A variety of different numerical integrators are tested on GEOS-Chem, demonstrating that KPP provided chemical integrators produce more accurate solutions in a given amount of time than the original GEOS-Chem chemical integrator. <p> The STEM chemical transport model provides a large scale end-to-end application to experiment with running chemical integration methods and transport methods on GPUs. GPUs provide high computational power at a fairly cheap cost. The CUDA programming environment simplifies the GPU development process by providing access to powerful functions to execute parallel code. This work demonstrates the accleration of a large scale end-to-end application on GPUs showing significant speedups. This is achieved by implementing all relevant kernels on the GPU using CUDA. Nevertheless, further improvements to GPUs are needed to allow these applications to fully exploit the power of GPUs. === Master of Science
author2 Computer Science
author_facet Computer Science
Eller, Paul Ray
author Eller, Paul Ray
author_sort Eller, Paul Ray
title Development and Acceleration of Parallel Chemical Transport Models
title_short Development and Acceleration of Parallel Chemical Transport Models
title_full Development and Acceleration of Parallel Chemical Transport Models
title_fullStr Development and Acceleration of Parallel Chemical Transport Models
title_full_unstemmed Development and Acceleration of Parallel Chemical Transport Models
title_sort development and acceleration of parallel chemical transport models
publisher Virginia Tech
publishDate 2014
url http://hdl.handle.net/10919/34044
http://scholar.lib.vt.edu/theses/available/etd-07172009-171608/
work_keys_str_mv AT ellerpaulray developmentandaccelerationofparallelchemicaltransportmodels
_version_ 1719341972498415616