"An Experimental Investigation of Showerhead Film Cooling Performance in a Transonic Vane Cascade at Low Freestream Turbulence"
In the drive to increase cycle efficiency, gas turbine designers have increased turbine inlet temperatures well beyond the metallurgical limits of engine components. In order to prevent failure and meet life requirements, turbine components must be cooled well below these hot gas temperatures. Fil...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/33075 http://scholar.lib.vt.edu/theses/available/etd-05212008-150634/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-33075 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-330752020-09-26T05:36:18Z "An Experimental Investigation of Showerhead Film Cooling Performance in a Transonic Vane Cascade at Low Freestream Turbulence" Bolchoz, Ruford Joseph Mechanical Engineering Ng, Wing Fai Diller, Thomas E. Vick, Brian L. cascade heat transfer turbulence vane transonic turbine film cooling In the drive to increase cycle efficiency, gas turbine designers have increased turbine inlet temperatures well beyond the metallurgical limits of engine components. In order to prevent failure and meet life requirements, turbine components must be cooled well below these hot gas temperatures. Film cooling is a widely employed cooling technique whereby air is extracted from the compressor and ejected through holes on the surfaces of hot gas path components. The cool air forms a protective film around the surface of the part. Accurate numerical prediction of film cooling performance is extremely difficult so experiments are required to validate designs and CFD tools. In this study, a first stage turbine vane with five rows of showerhead cooling was instrumented with platinum thin-film gauges to experimentally characterize film cooling performance. The vane was tested in a transonic vane cascade in Virginia Techâ s heated, blow-down wind tunnel. Two freestream exit Mach numbers of 0.76 and 1.0â corresponding to exit Reynolds numbers based on vane chord of 1.1x106 and 1.5x106, respectivelyâ were tested at an inlet freestream turbulence intensity of two percent and an integral length scale normalized by vane pitch of 0.05. The showerhead cooling scheme was tested at blowing ratios of 0 (no cooling), 1.5, and 2.0 and a density ratio of 1.35. Midspan Nusselt number and film cooling effectiveness distributions over the surface of the vane are presented. Film cooling was found to augment heat transfer and reduce adiabatic wall temperature downstream of injection. In general, an increase in blowing ratio was shown to increase augmentation and film cooling effectiveness. Increasing Reynolds number was shown to increase heat transfer and reduce effectiveness. Finally, comparing low turbulence measurements (Tu = 2%) to measurements performed at high freestream turbulence (Tu = 16%) by Nasir et al. [13] showed that large-scale high freestream turbulence can reduce heat transfer coefficient downstream of injection. Master of Science 2014-03-14T20:37:52Z 2014-03-14T20:37:52Z 2008-05-14 2008-05-21 2010-11-22 2008-06-17 Thesis etd-05212008-150634 http://hdl.handle.net/10919/33075 http://scholar.lib.vt.edu/theses/available/etd-05212008-150634/ Bolchoz_Thesis.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
cascade heat transfer turbulence vane transonic turbine film cooling |
spellingShingle |
cascade heat transfer turbulence vane transonic turbine film cooling Bolchoz, Ruford Joseph "An Experimental Investigation of Showerhead Film Cooling Performance in a Transonic Vane Cascade at Low Freestream Turbulence" |
description |
In the drive to increase cycle efficiency, gas turbine designers have increased turbine inlet temperatures well beyond the metallurgical limits of engine components. In order to prevent failure and meet life requirements, turbine components must be cooled well below these hot gas temperatures. Film cooling is a widely employed cooling technique whereby air is extracted from the compressor and ejected through holes on the surfaces of hot gas path components. The cool air forms a protective film around the surface of the part. Accurate numerical prediction of film cooling performance is extremely difficult so experiments are required to validate designs and CFD tools.
In this study, a first stage turbine vane with five rows of showerhead cooling was instrumented with platinum thin-film gauges to experimentally characterize film cooling performance. The vane was tested in a transonic vane cascade in Virginia Techâ s heated, blow-down wind tunnel. Two freestream exit Mach numbers of 0.76 and 1.0â corresponding to exit Reynolds numbers based on vane chord of 1.1x106 and 1.5x106, respectivelyâ were tested at an inlet freestream turbulence intensity of two percent and an integral length scale normalized by vane pitch of 0.05. The showerhead cooling scheme was tested at blowing ratios of 0 (no cooling), 1.5, and 2.0 and a density ratio of 1.35. Midspan Nusselt number and film cooling effectiveness distributions over the surface of the vane are presented.
Film cooling was found to augment heat transfer and reduce adiabatic wall temperature downstream of injection. In general, an increase in blowing ratio was shown to increase augmentation and film cooling effectiveness. Increasing Reynolds number was shown to increase heat transfer and reduce effectiveness. Finally, comparing low turbulence measurements (Tu = 2%) to measurements performed at high freestream turbulence (Tu = 16%) by Nasir et al. [13] showed that large-scale high freestream turbulence can reduce heat transfer coefficient downstream of injection. === Master of Science |
author2 |
Mechanical Engineering |
author_facet |
Mechanical Engineering Bolchoz, Ruford Joseph |
author |
Bolchoz, Ruford Joseph |
author_sort |
Bolchoz, Ruford Joseph |
title |
"An Experimental Investigation of Showerhead Film Cooling Performance in a Transonic Vane Cascade at Low Freestream Turbulence" |
title_short |
"An Experimental Investigation of Showerhead Film Cooling Performance in a Transonic Vane Cascade at Low Freestream Turbulence" |
title_full |
"An Experimental Investigation of Showerhead Film Cooling Performance in a Transonic Vane Cascade at Low Freestream Turbulence" |
title_fullStr |
"An Experimental Investigation of Showerhead Film Cooling Performance in a Transonic Vane Cascade at Low Freestream Turbulence" |
title_full_unstemmed |
"An Experimental Investigation of Showerhead Film Cooling Performance in a Transonic Vane Cascade at Low Freestream Turbulence" |
title_sort |
"an experimental investigation of showerhead film cooling performance in a transonic vane cascade at low freestream turbulence" |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/33075 http://scholar.lib.vt.edu/theses/available/etd-05212008-150634/ |
work_keys_str_mv |
AT bolchozrufordjoseph anexperimentalinvestigationofshowerheadfilmcoolingperformanceinatransonicvanecascadeatlowfreestreamturbulence |
_version_ |
1719341909330100224 |