Fundamentals of the Simplex Communication Channel With Retransmissions

The need for multiple access strategies arises whenever a number of users have to share a communication resource, since it is usually either cost prohibitive or impractical to dedicate a communication channel to a particular user. A need for such algorithms arises in many instances, particularly in...

Full description

Bibliographic Details
Main Author: Davidson, Boris
Other Authors: Electrical and Computer Engineering
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/30471
http://scholar.lib.vt.edu/theses/available/etd-332122139711101/
Description
Summary:The need for multiple access strategies arises whenever a number of users have to share a communication resource, since it is usually either cost prohibitive or impractical to dedicate a communication channel to a particular user. A need for such algorithms arises in many instances, particularly in applications utilizing wireless systems where all users access a common channel or medium. Such random access techniques as ALOHA and slotted ALOHA have been successfully implemented in a number of wireless applications. One of the major drawbacks of these algorithms is the necessity of a return path from the central station to each system user, which makes their use both inefficient and expensive for applications where one-way communication would suffice. For such applications, a need remained for a random access algorithm which can maximize the probability of successful message transmission in a one-way communication environment. A random access technique that addresses the above-mentioned need is developed. With this technique, each user sends an original message of predetermined length to a central receiver. The user then retransmits the message a specified number of times in a predetermined interval reserved for the retransmission process. The time interval between each successive retransmission of a given message is random. Assuming total annihilation of all colliding messages, the expression for the probability of successful transmission of a given message in terms of the major channel parameters is theoretically formulated. This technique offers a significant improvement, compared to a single transmission, in ensuring that a message is successfully received. The actual message collision dynamics in this system are experimentally studied using two different types of direct-sequence spread spectrum receivers, one employing a sliding correlator and the other using a matched filter. The spreading code in such systems offers extra protection for messages against possible interferers. The results indicate that it is often possible to properly receive a given message in the presence of co-channel interferers, thus significantly improving the overall system performance. These results are subsequently incorporated with the propagation data for several different types of microcells to arrive at a more precise theory of the link. === Ph. D.