Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices
The development of high power density three-phase ac converter has been a hot topic in power electronics area due to the increasing needs in applications like electric vehicle, aircraft and aerospace, where light weight and/or low volume is usually a must. Many challenges exist due to the complicate...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/30155 http://scholar.lib.vt.edu/theses/available/etd-12182008-213359/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-30155 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-301552020-09-26T05:30:59Z Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices Lai, Rixin Electrical and Computer Engineering Wang, Fei Fred Liu, Yilu Lin, Tao Burgos, Rolando Boroyevich, Dushan passive component minimization high performance control development high power density failure mode analysis topology evaluation SiC devices The development of high power density three-phase ac converter has been a hot topic in power electronics area due to the increasing needs in applications like electric vehicle, aircraft and aerospace, where light weight and/or low volume is usually a must. Many challenges exist due to the complicated correlations in a three-phase power converter system. In addition, with the emerging SiC device technology the operating frequency of the converter can be potentially pushed to the range from tens of kHz to hundreds of kHz at higher voltage and higher power conditions. The extended frequency range brings opportunities to further improve the power density of the converter. Technologies based on existing devices need to be revisited. In this dissertation, a systematic methodology to analyze and design the high power density three-phase ac converter is developed. All the key factors of the converter design are explored from the high density standpoint. Firstly, the criteria for the passive filter selection are derived and the relationship between the switching frequency and the size of the EMI filter is investigated. A function integration concept as well as the physical design approach is proposed. Secondly, a topology evaluation method is presented, which provides the insight into the relationships between the system constraints, operating conditions and design variables. Four topologies are then compared with the proposed approach culminating with a favored topology under the given conditions. Thirdly, a novel average model is developed for the selected topology, and used for devising a carrier-based control approach with simple calculation and good regulation performance. Fourthly, the converter failure mode operation and corresponding protection approaches are discussed and developed. Finally, a 10 kW three-phase ac/ac converter is built with the SiC devices. All the key concepts and ideas developed in this work are implemented in this hardware system and then verified by the experimental results. Ph. D. 2014-03-14T20:20:51Z 2014-03-14T20:20:51Z 2008-12-10 2008-12-18 2010-01-25 2009-01-25 Dissertation etd-12182008-213359 http://hdl.handle.net/10919/30155 http://scholar.lib.vt.edu/theses/available/etd-12182008-213359/ dissertation_Rixin_final.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
passive component minimization high performance control development high power density failure mode analysis topology evaluation SiC devices |
spellingShingle |
passive component minimization high performance control development high power density failure mode analysis topology evaluation SiC devices Lai, Rixin Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices |
description |
The development of high power density three-phase ac converter has been a hot topic in power electronics area due to the increasing needs in applications like electric vehicle, aircraft and aerospace, where light weight and/or low volume is usually a must. Many challenges exist due to the complicated correlations in a three-phase power converter system. In addition, with the emerging SiC device technology the operating frequency of the converter can be potentially pushed to the range from tens of kHz to hundreds of kHz at higher voltage and higher power conditions. The extended frequency range brings opportunities to further improve the power density of the converter. Technologies based on existing devices need to be revisited.
In this dissertation, a systematic methodology to analyze and design the high power density three-phase ac converter is developed. All the key factors of the converter design are explored from the high density standpoint. Firstly, the criteria for the passive filter selection are derived and the relationship between the switching frequency and the size of the EMI filter is investigated. A function integration concept as well as the physical design approach is proposed. Secondly, a topology evaluation method is presented, which provides the insight into the relationships between the system constraints, operating conditions and design variables. Four topologies are then compared with the proposed approach culminating with a favored topology under the given conditions. Thirdly, a novel average model is developed for the selected topology, and used for devising a carrier-based control approach with simple calculation and good regulation performance. Fourthly, the converter failure mode operation and corresponding protection approaches are discussed and developed. Finally, a 10 kW three-phase ac/ac converter is built with the SiC devices. All the key concepts and ideas developed in this work are implemented in this hardware system and then verified by the experimental results. === Ph. D. |
author2 |
Electrical and Computer Engineering |
author_facet |
Electrical and Computer Engineering Lai, Rixin |
author |
Lai, Rixin |
author_sort |
Lai, Rixin |
title |
Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices |
title_short |
Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices |
title_full |
Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices |
title_fullStr |
Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices |
title_full_unstemmed |
Analysis and Design for a High Power Density Three-Phase AC Converter Using SiC Devices |
title_sort |
analysis and design for a high power density three-phase ac converter using sic devices |
publisher |
Virginia Tech |
publishDate |
2014 |
url |
http://hdl.handle.net/10919/30155 http://scholar.lib.vt.edu/theses/available/etd-12182008-213359/ |
work_keys_str_mv |
AT lairixin analysisanddesignforahighpowerdensitythreephaseacconverterusingsicdevices |
_version_ |
1719340677539561472 |