A Numerical Investigation Of The Canonical Duality Method For Non-Convex Variational Problems
This thesis represents a theoretical and numerical investigation of the canonical duality theory, which has been recently proposed as an alternative to the classic and direct methods for non-convex variational problems. These non-convex variational problems arise in a wide range of scientific and en...
Main Author: | Yu, Haofeng |
---|---|
Other Authors: | Mathematics |
Format: | Others |
Published: |
Virginia Tech
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/29095 http://scholar.lib.vt.edu/theses/available/etd-09252011-085711/ |
Similar Items
-
Second order symmetric duality in fractional variational problems over cone constraints
by: Jayswal Anurag, et al.
Published: (2018-01-01) -
A Ginzburg–Landau Type Energy with Weight and with Convex Potential Near Zero
by: Rejeb Hadiji, et al.
Published: (2020-06-01) -
Duality of locally quasi-convex convergence groups
by: Pranav Sharma
Published: (2021-04-01) -
Duality for a class of second order symmetric nondifferentiable fractional variational problems
by: Prasad Ashish Kumar, et al.
Published: (2020-01-01) -
Efficiency and duality for multiobjective fractional variational problems with (ρ,b) - quasiinvexity
by: Mititelu Ştefan, et al.
Published: (2009-01-01)