Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current

Position estimation using only active phase voltage and current is presented to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fourier analysis, flux-linkage and...

Full description

Bibliographic Details
Main Author: Ha, Keunsoo
Other Authors: Electrical and Computer Engineering
Format: Others
Published: Virginia Tech 2014
Subjects:
FFT
Online Access:http://hdl.handle.net/10919/28296
http://scholar.lib.vt.edu/theses/available/etd-07142008-150831/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-28296
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-282962021-12-08T05:44:44Z Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current Ha, Keunsoo Electrical and Computer Engineering Ramu, Krishnan Stilwell, Daniel J. Lindner, Douglas K. De La Ree, Jaime Kohler, Werner E. Flux-linkage Estimation First Switching Harmonic FFT Fourier series Low-cost Drive High Efficiency Acoustic Noise Position Estimation Switched Reluctance Motor Position estimation using only active phase voltage and current is presented to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fourier analysis, flux-linkage and position are estimated without external hardware circuitry such as a modulator and demodulator, resulting in increasing cost, as well as large position estimation error produced when the motional back emf is ignored near zero speed. Hence the proposed position estimation scheme covers the entire speed range including the standstill under various loads and it has high resolution information depending on switching frequency. Fourier series and Fast Fourier transform are employed to decompose the phase voltage and current into its first switching harmonic. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. The estimated values very closely track the actual values in dynamic simulations and experiments. It is shown that the proposed position estimation scheme using Fourier analysis is sufficiently accurate and works satisfactorily at various operating points. This research also proposes an accurate self-inductance measurement method. In general, when applying circulating currents within the body of a ferromagnetic material under conditions of a time varying magnetic flux, the effects of eddy current losses and resistance changes due to heating decrease the magnetic field strength and thereby the reduced magnetic field decreases the magnetic flux-linkage of SRM. These losses make a challenge to the measurement of magnetic characteristics of SRM. These motives lead to propose a measurement methodology based on 60 Hz sinusoidal excitation using a variable AC power supply, which provides an alternative to time domain integration approaches for self-inductance or flux-linkage measurement as well as eliminates error arising from thermal and eddy currents effects. The validation of the proposed method is verified with the correlation between the measurement and FEA results of flux-linkage. Furthermore, this research proposes the solutions for low cost and high efficiency drive systems, consisting of a split AC converter and a two-phase SRM. Its performance is analyzed and verified with experiments at the rated speed under various loads. It is believed that this drive system combined with the proposed position estimation scheme using Fourier analysis is a strong contender to be a low cost motor drive system with single switch per phase having comparable efficiency and acoustic noise level as an asymmetric drive system. Ph. D. 2014-03-14T20:14:01Z 2014-03-14T20:14:01Z 2008-06-26 2008-07-14 2009-08-04 2008-08-04 Dissertation etd-07142008-150831 http://hdl.handle.net/10919/28296 http://scholar.lib.vt.edu/theses/available/etd-07142008-150831/ KeunsooHa_Dissertation.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic Flux-linkage Estimation
First Switching Harmonic
FFT
Fourier series
Low-cost Drive
High Efficiency
Acoustic Noise
Position Estimation
Switched Reluctance Motor
spellingShingle Flux-linkage Estimation
First Switching Harmonic
FFT
Fourier series
Low-cost Drive
High Efficiency
Acoustic Noise
Position Estimation
Switched Reluctance Motor
Ha, Keunsoo
Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current
description Position estimation using only active phase voltage and current is presented to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fourier analysis, flux-linkage and position are estimated without external hardware circuitry such as a modulator and demodulator, resulting in increasing cost, as well as large position estimation error produced when the motional back emf is ignored near zero speed. Hence the proposed position estimation scheme covers the entire speed range including the standstill under various loads and it has high resolution information depending on switching frequency. Fourier series and Fast Fourier transform are employed to decompose the phase voltage and current into its first switching harmonic. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. The estimated values very closely track the actual values in dynamic simulations and experiments. It is shown that the proposed position estimation scheme using Fourier analysis is sufficiently accurate and works satisfactorily at various operating points. This research also proposes an accurate self-inductance measurement method. In general, when applying circulating currents within the body of a ferromagnetic material under conditions of a time varying magnetic flux, the effects of eddy current losses and resistance changes due to heating decrease the magnetic field strength and thereby the reduced magnetic field decreases the magnetic flux-linkage of SRM. These losses make a challenge to the measurement of magnetic characteristics of SRM. These motives lead to propose a measurement methodology based on 60 Hz sinusoidal excitation using a variable AC power supply, which provides an alternative to time domain integration approaches for self-inductance or flux-linkage measurement as well as eliminates error arising from thermal and eddy currents effects. The validation of the proposed method is verified with the correlation between the measurement and FEA results of flux-linkage. Furthermore, this research proposes the solutions for low cost and high efficiency drive systems, consisting of a split AC converter and a two-phase SRM. Its performance is analyzed and verified with experiments at the rated speed under various loads. It is believed that this drive system combined with the proposed position estimation scheme using Fourier analysis is a strong contender to be a low cost motor drive system with single switch per phase having comparable efficiency and acoustic noise level as an asymmetric drive system. === Ph. D.
author2 Electrical and Computer Engineering
author_facet Electrical and Computer Engineering
Ha, Keunsoo
author Ha, Keunsoo
author_sort Ha, Keunsoo
title Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current
title_short Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current
title_full Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current
title_fullStr Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current
title_full_unstemmed Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current
title_sort position estimation in switched reluctance motor drives using the first switching harmonics of phase voltage and current
publisher Virginia Tech
publishDate 2014
url http://hdl.handle.net/10919/28296
http://scholar.lib.vt.edu/theses/available/etd-07142008-150831/
work_keys_str_mv AT hakeunsoo positionestimationinswitchedreluctancemotordrivesusingthefirstswitchingharmonicsofphasevoltageandcurrent
_version_ 1723963835381972992