Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams

I investigated the drivers of nutrient cycling by heterotrophic microbes during leaf decomposition in streams. My research addressed two overarching questions: 1) how do exogenous and endogenous factors interact to drive microbial nitrogen (N) cycling during organic matter decomposition in stream ec...

Full description

Bibliographic Details
Main Author: Cheever, Beth Marie
Other Authors: Biological Sciences
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/26809
http://scholar.lib.vt.edu/theses/available/etd-04122012-195537/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-26809
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-268092020-09-26T05:34:13Z Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams Cheever, Beth Marie Biological Sciences Webster, Jackson R. Barrett, John E. Benfield, Ernest F. Dolloff, C. Andrew Valett, H. Maurice organic matter decomposition consumer nutrient recycling ecological stoichiometry streams nitrogen cycling I investigated the drivers of nutrient cycling by heterotrophic microbes during leaf decomposition in streams. My research addressed two overarching questions: 1) how do exogenous and endogenous factors interact to drive microbial nitrogen (N) cycling during organic matter decomposition in stream ecosystems, and 2) what affect will the global increase in biologically active N have on these factors and resulting fluxes? I conducted studies in natural streams and laboratory mesocosms to address these questions and used general stoichiometric theory to conceptualize diverse microbial assemblages as a single functional unit within stream ecosystems. First, I described spatial and temporal patterns of N and phosphorus uptake and mineralization by leaf-associated microbial assemblages in five southern Appalachian streams which spanned a gradient of nitrate availability. I found wide variations in nutrient fluxes across time and space, perhaps due to macroinvertebrate-induced changes in microbial assemblage composition. Secondly, I explored the roles of endogenous and exogenous N in meeting microbial requirements. I isolated microbial biomass from leaves that had been labeled with N-15 and incubated in the same five Appalachian streams. The importance of exogenous N increased as decomposition progressed and was particularly important in streams with high N availability. Finally, I tested potential interactions between two exogenous drivers of microbial nutrient cycling: N availability and animal activity. I used mesocosms to test the effects of consumer nutrient recycling (CNR) and grazing by two shredders on microbial uptake under different N regimes. Animals only influenced microbial uptake under low N conditions. Shredder CNR generally stimulated uptake while grazing had a negative effect. My research provides a robust model describing N cycling by detritus-associated microbes over the course of decomposition. According to this model, microbes assimilate endogenous N during the initial stages of decomposition and immobilization of exogenous N becomes more important as decomposition progresses. The labeled substrate technique that I used to generate this model is an elegant way of testing the applicability of this model in other ecosystems. My results also suggest that anthropogenic activities that increase exogenous N availability have implications for N and C cycling in lotic systems. Ph. D. 2014-03-14T20:09:29Z 2014-03-14T20:09:29Z 2012-03-30 2012-04-12 2012-06-22 2012-04-24 Dissertation etd-04122012-195537 http://hdl.handle.net/10919/26809 http://scholar.lib.vt.edu/theses/available/etd-04122012-195537/ Cheever_BM_D_2012_Copyright.pdf Cheever_BM_D_2012.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic organic matter decomposition
consumer nutrient recycling
ecological stoichiometry
streams
nitrogen cycling
spellingShingle organic matter decomposition
consumer nutrient recycling
ecological stoichiometry
streams
nitrogen cycling
Cheever, Beth Marie
Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams
description I investigated the drivers of nutrient cycling by heterotrophic microbes during leaf decomposition in streams. My research addressed two overarching questions: 1) how do exogenous and endogenous factors interact to drive microbial nitrogen (N) cycling during organic matter decomposition in stream ecosystems, and 2) what affect will the global increase in biologically active N have on these factors and resulting fluxes? I conducted studies in natural streams and laboratory mesocosms to address these questions and used general stoichiometric theory to conceptualize diverse microbial assemblages as a single functional unit within stream ecosystems. First, I described spatial and temporal patterns of N and phosphorus uptake and mineralization by leaf-associated microbial assemblages in five southern Appalachian streams which spanned a gradient of nitrate availability. I found wide variations in nutrient fluxes across time and space, perhaps due to macroinvertebrate-induced changes in microbial assemblage composition. Secondly, I explored the roles of endogenous and exogenous N in meeting microbial requirements. I isolated microbial biomass from leaves that had been labeled with N-15 and incubated in the same five Appalachian streams. The importance of exogenous N increased as decomposition progressed and was particularly important in streams with high N availability. Finally, I tested potential interactions between two exogenous drivers of microbial nutrient cycling: N availability and animal activity. I used mesocosms to test the effects of consumer nutrient recycling (CNR) and grazing by two shredders on microbial uptake under different N regimes. Animals only influenced microbial uptake under low N conditions. Shredder CNR generally stimulated uptake while grazing had a negative effect. My research provides a robust model describing N cycling by detritus-associated microbes over the course of decomposition. According to this model, microbes assimilate endogenous N during the initial stages of decomposition and immobilization of exogenous N becomes more important as decomposition progresses. The labeled substrate technique that I used to generate this model is an elegant way of testing the applicability of this model in other ecosystems. My results also suggest that anthropogenic activities that increase exogenous N availability have implications for N and C cycling in lotic systems. === Ph. D.
author2 Biological Sciences
author_facet Biological Sciences
Cheever, Beth Marie
author Cheever, Beth Marie
author_sort Cheever, Beth Marie
title Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams
title_short Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams
title_full Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams
title_fullStr Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams
title_full_unstemmed Microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams
title_sort microbial and metazoan effects on nutrient dynamics during leaf decomposition in streams
publisher Virginia Tech
publishDate 2014
url http://hdl.handle.net/10919/26809
http://scholar.lib.vt.edu/theses/available/etd-04122012-195537/
work_keys_str_mv AT cheeverbethmarie microbialandmetazoaneffectsonnutrientdynamicsduringleafdecompositioninstreams
_version_ 1719341453103071232