A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras
We prove the positivity of Lusztig's q-analogue of weight multiplicity in a purely combinatorial way for rank 2 Lie algebras. Each summand in the polynomial can be interpreted as a linear combination of positive roots. We prove that all negative coefficients are cancelled in the polynomial. Fu...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2011
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/11071 http://scholar.lib.vt.edu/theses/available/etd-12042003-173047 |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-11071 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-110712020-09-29T05:32:16Z A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras Gillespie, Jason Michael Mathematics Shimozono, Mark M. Green, Edward L. Parry, Charles J. Brown, Ezra A. Haskell, Peter E. Lusztig q-analogue Combinatorics Lie Algebras Root Systems We prove the positivity of Lusztig's q-analogue of weight multiplicity in a purely combinatorial way for rank 2 Lie algebras. Each summand in the polynomial can be interpreted as a linear combination of positive roots. We prove that all negative coefficients are cancelled in the polynomial. Further, the analysis of the root systems allows us to state formulae for every coefficient in Lusztig's q-analogue for rank 2 Lie algebras. Ph. D. 2011-08-22T18:51:44Z 2011-08-22T18:51:44Z 2003-12-02 2003-12-04 2003-12-09 2003-12-09 Dissertation etd-12042003-173047 http://hdl.handle.net/10919/11071 http://scholar.lib.vt.edu/theses/available/etd-12042003-173047 Kostkarevised.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Lusztig q-analogue Combinatorics Lie Algebras Root Systems |
spellingShingle |
Lusztig q-analogue Combinatorics Lie Algebras Root Systems Gillespie, Jason Michael A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras |
description |
We prove the positivity of Lusztig's q-analogue of weight multiplicity in a purely combinatorial way for rank 2 Lie algebras. Each summand in the polynomial can be interpreted as a linear combination of positive roots. We prove that all negative coefficients are cancelled in the polynomial. Further, the analysis of the root systems allows us to state formulae for every coefficient in Lusztig's q-analogue for rank 2 Lie algebras. === Ph. D. |
author2 |
Mathematics |
author_facet |
Mathematics Gillespie, Jason Michael |
author |
Gillespie, Jason Michael |
author_sort |
Gillespie, Jason Michael |
title |
A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras |
title_short |
A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras |
title_full |
A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras |
title_fullStr |
A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras |
title_full_unstemmed |
A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras |
title_sort |
combinatorial proof of the positivity of the lusztig q-analogue of weight multiplicity for rank 2 lie algebras |
publisher |
Virginia Tech |
publishDate |
2011 |
url |
http://hdl.handle.net/10919/11071 http://scholar.lib.vt.edu/theses/available/etd-12042003-173047 |
work_keys_str_mv |
AT gillespiejasonmichael acombinatorialproofofthepositivityofthelusztigqanalogueofweightmultiplicityforrank2liealgebras AT gillespiejasonmichael combinatorialproofofthepositivityofthelusztigqanalogueofweightmultiplicityforrank2liealgebras |
_version_ |
1719343269175885824 |