Summary: | The ionosphere is the conducting part of the upper atmosphere that plays a significant role in trans-ionospheric high frequency (HF, 3-30 MHz) radiowave propagation. Solar activities, such as solar flares, radiation storms, coronal mass ejections (CMEs), alter the state of the ionosphere, a phenomenon known as Sudden Ionospheric Disturbance (SID), that can severely disrupt HF radio communication links by enhancing radiowave absorption and altering signal frequency and phase. The Super Dual Auroral Radar Network (SuperDARN) is an international network of low-power HF coherent scatter radars distributed across the globe to probe the ionosphere and its relation to solar activities. In this study, we used SuperDARN HF radar measurements with coordinated spacecraft and riometer observations to investigate statistical characteristics and the driving mechanisms of various manifestations of solar flare-driven SIDs in HF observations. We begin in Chapter 2 with a statistical characterization of various effects of solar flares on SuperDARN observations. Simultaneous observations from GOES spacecraft and SuperDARN radars confirmed flare-driven HF absorption depends on solar zenith angle, operating frequency, and intensity of the solar flare. The study found flare-driven SID also affects the SuperDARN backscatter signal frequency, which produces a sudden rise in Doppler velocity observation, referred to as the ``Doppler flash'', which occurs before the HF absorption effect. In Chapter 3, we further investigate the HF absorption effect during successive solar flares and those co-occurring with other geomagnetic disturbances during the 2017 solar storm. We found successive solar flares can extend the ionospheric relaxation time and the variation of HF absorption with latitude is different depending on the type of disturbance. In Chapter 4, we looked into an inertial property of the ionosphere, sluggishness, its variations with solar flare intensity, and made some inferences about D-region ion-chemistry using a simulation study. Specifically, we found solar flares alter the D-region chemistry by enhancing the electron detachment rate due to a sudden rise in molecular vibrational and rotational energy under the influence of enhanced solar radiation. In Chapter 5, we describe a model framework that reproduces HF absorption observed by riometers. This chapter compares different model formulations for estimating HF absorption and discusses different driving influences of HF absorption. In Chapter 6, we have investigated different driving mechanisms of the Doppler flash observed by SuperDARN radars. We note two particular findings: (i) the Doppler flash is predominantly driven by a change in the F-region refractive index and (ii) a combination of solar flare-driven enhancement in photoionization, and changes in the zonal electric field and(or) ionospheric conductivity reduces upward ion-drift, which produces a lowering effect in the F-region HF radiowave reflection height. Collectively, these research findings provide a statistical characterization of various solar flare effects on the ionosphere seen in the HF observations, and insights into their driving mechanisms and impacts on ionospheric dynamics. === Doctor of Philosophy === The Earth's ionosphere, extending from about 60 km to 1000 km in altitude, is an electrically charged region of the upper atmosphere that exists primarily due to ionization by solar X-ray and extreme ultraviolet radiation. The ionosphere is an effective barrier to energetic electromagnetic (EM) radiation and charged particles originating from the Sun or any other extraterrestrial sources and protect us against harmful space radiation. High frequency (HF, 3-30 MHz) radio communication, broadly used for real-time medium and long-range communication, is strongly dependent on the state of the ionosphere, which is susceptible to solar activities, such as solar flares, solar energetic particles (SEPs), and coronal mass ejections (CMEs). Specifically, we are interested in the impacts of solar flares. In this study, we use Super Dual Auroral Radar Network (SuperDARN) HF radars, ground-based riometers, and coordinated spacecraft observations to investigate the driving mechanisms of various space weather impacts on the ionosphere and radiowave propagation following solar flares. We begin in Chapter 2 with a characterization of various kinds of ionospheric disturbances manifested in SuperDARN backscattered signal following solar flares. Specifically, we characterized HF absorption effects and frequency anomalies experienced by traveling radiowaves, also known as Shortwave Fadeout (SWF) and Sudden Frequency Deviations (SFDs), respectively. In SuperDARN HF radar observations, SFDs are recorded as a sudden enhancement in Doppler velocity, which is referred to as the ``Doppler flash''. In Chapter 3, we investigate a special event study that elucidates the nonlinear physics behind HF absorption caused by multiple simultaneous solar flares and flares co-occurring with SEPs and CMEs. In Chapter 4, we explore an inertial property of the ionosphere, known as sluggishness, and its dependence on solar flares can provide important information about the chemical proprieties of the ionosphere. We found that the enhanced solar radiation during a solar flare increases the molecular vibrational and rotational energy that in turn enhances the electron detachment rate and reduces ionospheric sluggishness. In Chapter 5, we describe a framework to estimate HF absorption observed by riometers following solar flares. We analyze the influence of different physical parameters, such as collision frequency and electron temperature, on HF absorption. In Chapter 6, we delved into the physical processes that drive the Doppler flash in SuperDARN observations following solar flares. We find, (i) the Doppler flash is predominately driven by change in the F-region refractive index and (ii) a combination of solar flare-driven enhancement in photoionization, and change in zonal electric field and(or) ionospheric conductivity reduces upward ion-drift, which produces a lowering effect in the F-region HF radiowave reflection height. Taken together, these research findings provide new insights into solar flare impacts on the ionosphere and could be used to improve forecasting of ionospheric space weather disturbances following solar flares.
|