kernlab - An S4 package for kernel methods in R

kernlab is an extensible package for kernel-based machine learning methods in R. It takes advantage of R's new S4 object model and provides a framework for creating and using kernel-based algorithms. The package contains dot product primitives (kernels), implementations of support vector machin...

Full description

Bibliographic Details
Main Authors: Karatzoglou, Alexandros, Smola, Alex, Hornik, Kurt, Zeileis, Achim
Format: Others
Language:en
Published: Institut für Statistik und Mathematik, WU Vienna University of Economics and Business 2004
Subjects:
Online Access:http://epub.wu.ac.at/1048/1/document.pdf
id ndltd-VIENNA-oai-epub.wu-wien.ac.at-epub-wu-01_766
record_format oai_dc
spelling ndltd-VIENNA-oai-epub.wu-wien.ac.at-epub-wu-01_7662014-11-12T05:04:14Z kernlab - An S4 package for kernel methods in R Karatzoglou, Alexandros Smola, Alex Hornik, Kurt Zeileis, Achim kernel methods / support vector machines / quadratic programming / ranking / clustering / S4 / R kernlab is an extensible package for kernel-based machine learning methods in R. It takes advantage of R's new S4 object model and provides a framework for creating and using kernel-based algorithms. The package contains dot product primitives (kernels), implementations of support vector machines and the relevance vector machine, Gaussian processes, a ranking algorithm, kernel PCA, kernel CCA, and a spectral clustering algorithm. Moreover it provides a general purpose quadratic programming solver, and an incomplete Cholesky decomposition method. (author's abstract) Institut für Statistik und Mathematik, WU Vienna University of Economics and Business 2004 Paper NonPeerReviewed en application/pdf http://epub.wu.ac.at/1048/1/document.pdf Series: Research Report Series / Department of Statistics and Mathematics http://epub.wu.ac.at/1048/
collection NDLTD
language en
format Others
sources NDLTD
topic kernel methods / support vector machines / quadratic programming / ranking / clustering / S4 / R
spellingShingle kernel methods / support vector machines / quadratic programming / ranking / clustering / S4 / R
Karatzoglou, Alexandros
Smola, Alex
Hornik, Kurt
Zeileis, Achim
kernlab - An S4 package for kernel methods in R
description kernlab is an extensible package for kernel-based machine learning methods in R. It takes advantage of R's new S4 object model and provides a framework for creating and using kernel-based algorithms. The package contains dot product primitives (kernels), implementations of support vector machines and the relevance vector machine, Gaussian processes, a ranking algorithm, kernel PCA, kernel CCA, and a spectral clustering algorithm. Moreover it provides a general purpose quadratic programming solver, and an incomplete Cholesky decomposition method. (author's abstract) === Series: Research Report Series / Department of Statistics and Mathematics
author Karatzoglou, Alexandros
Smola, Alex
Hornik, Kurt
Zeileis, Achim
author_facet Karatzoglou, Alexandros
Smola, Alex
Hornik, Kurt
Zeileis, Achim
author_sort Karatzoglou, Alexandros
title kernlab - An S4 package for kernel methods in R
title_short kernlab - An S4 package for kernel methods in R
title_full kernlab - An S4 package for kernel methods in R
title_fullStr kernlab - An S4 package for kernel methods in R
title_full_unstemmed kernlab - An S4 package for kernel methods in R
title_sort kernlab - an s4 package for kernel methods in r
publisher Institut für Statistik und Mathematik, WU Vienna University of Economics and Business
publishDate 2004
url http://epub.wu.ac.at/1048/1/document.pdf
work_keys_str_mv AT karatzogloualexandros kernlabans4packageforkernelmethodsinr
AT smolaalex kernlabans4packageforkernelmethodsinr
AT hornikkurt kernlabans4packageforkernelmethodsinr
AT zeileisachim kernlabans4packageforkernelmethodsinr
_version_ 1716719931091845120