kernlab - An S4 Package for Kernel Methods in R
kernlab is an extensible package for kernel-based machine learning methods in R. It takes advantage of R's new S4 object model and provides a framework for creating and using kernel-based algorithms. The package contains dot product primitives (kernels), implementations of support vector mac...
Main Authors: | , , , |
---|---|
Format: | Others |
Language: | en |
Published: |
American Statistical Association
2004
|
Subjects: | |
Online Access: | http://epub.wu.ac.at/3999/1/kernlab.pdf |
id |
ndltd-VIENNA-oai-epub.wu-wien.ac.at-3999 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VIENNA-oai-epub.wu-wien.ac.at-39992018-05-05T05:18:39Z kernlab - An S4 Package for Kernel Methods in R Karatzoglou, Alexandros Smola, Alex Hornik, Kurt Zeileis, Achim kernel methods / support vector machines / quadratic programming / ranking / clustering / S4 / R kernlab is an extensible package for kernel-based machine learning methods in R. It takes advantage of R's new S4 object model and provides a framework for creating and using kernel-based algorithms. The package contains dot product primitives (kernels), implementations of support vector machines and the relevance vector machine, Gaussian processes, a ranking algorithm, kernel PCA, kernel CCA, and a spectral clustering algorithm. Moreover it provides a general purpose quadratic programming solver, and an incomplete Cholesky decomposition method. American Statistical Association 2004-11 Article PeerReviewed en application/pdf http://epub.wu.ac.at/3999/1/kernlab.pdf http://www.jstatsoft.org/v11/i09/paper http://epub.wu.ac.at/3999/ |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
kernel methods / support vector machines / quadratic programming / ranking / clustering /
S4 / R |
spellingShingle |
kernel methods / support vector machines / quadratic programming / ranking / clustering /
S4 / R Karatzoglou, Alexandros Smola, Alex Hornik, Kurt Zeileis, Achim kernlab - An S4 Package for Kernel Methods in R |
description |
kernlab is an extensible package for kernel-based machine learning methods in R. It
takes advantage of R's new S4 object model and provides a framework for creating and
using kernel-based algorithms. The package contains dot product primitives (kernels),
implementations of support vector machines and the relevance vector machine, Gaussian
processes, a ranking algorithm, kernel PCA, kernel CCA, and a spectral clustering algorithm.
Moreover it provides a general purpose quadratic programming solver, and an
incomplete Cholesky decomposition method. |
author |
Karatzoglou, Alexandros Smola, Alex Hornik, Kurt Zeileis, Achim |
author_facet |
Karatzoglou, Alexandros Smola, Alex Hornik, Kurt Zeileis, Achim |
author_sort |
Karatzoglou, Alexandros |
title |
kernlab - An S4 Package for Kernel Methods in R |
title_short |
kernlab - An S4 Package for Kernel Methods in R |
title_full |
kernlab - An S4 Package for Kernel Methods in R |
title_fullStr |
kernlab - An S4 Package for Kernel Methods in R |
title_full_unstemmed |
kernlab - An S4 Package for Kernel Methods in R |
title_sort |
kernlab - an s4 package for kernel methods in r |
publisher |
American Statistical Association |
publishDate |
2004 |
url |
http://epub.wu.ac.at/3999/1/kernlab.pdf |
work_keys_str_mv |
AT karatzogloualexandros kernlabans4packageforkernelmethodsinr AT smolaalex kernlabans4packageforkernelmethodsinr AT hornikkurt kernlabans4packageforkernelmethodsinr AT zeileisachim kernlabans4packageforkernelmethodsinr |
_version_ |
1718634586063241216 |