Using nanoparticle stabilized foam to achieve wellbore stability in shales

Foams have been used successfully in the industry for both drilling and fracturing. These foams usually consist of both an aqueous liquid phase and a gas phase; air, nitrogen, and/or CO2 are the most common. Due to the aqueous liquid component in the foam, drilling and fracturing in shale formatio...

Full description

Bibliographic Details
Main Author: Spisak, Benjamin James
Format: Others
Language:English
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/2152/ETD-UT-2011-08-4327
Description
Summary:Foams have been used successfully in the industry for both drilling and fracturing. These foams usually consist of both an aqueous liquid phase and a gas phase; air, nitrogen, and/or CO2 are the most common. Due to the aqueous liquid component in the foam, drilling and fracturing in shale formations can cause swelling and collapsing of the rock through formation invasion. Sensoy et al.(2009) has shown that the addition of nanoparticle dispersions to water based fluids reduces the amount of water invading the shale and has been used as a kickoff point for this research. Results presented in this thesis show that the addition of nanoparticles to foams enhances the performance of these fluids by reducing their invasion into shale. The use of foams allows for a low concentration of nanoparticles making this technology much more economically feasible for field testing and use. === text