Effect of anode properties on the performance of a direct methanol fuel cell
This thesis is an investigation of the anode of a direct methanol fuel cell (DMFC) through numerical modeling and simulation. This model attempts to help better understand the two phase flow phenomena in the anode as well as to explain some of the many problems on the anode side of a DMFC and show...
Main Author: | |
---|---|
Format: | Others |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | http://hdl.handle.net/2152/ETD-UT-2010-12-2071 |
id |
ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2010-12-2071 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2010-12-20712015-09-20T16:57:31ZEffect of anode properties on the performance of a direct methanol fuel cellGarvin, Joshua JosephDMFCAnodeDirect methanol fuel cellFuel cellsFuel cell modelingPhase transportVapor-liquid equilibriumThis thesis is an investigation of the anode of a direct methanol fuel cell (DMFC) through numerical modeling and simulation. This model attempts to help better understand the two phase flow phenomena in the anode as well as to explain some of the many problems on the anode side of a DMFC and show how changing some of the anode side properties could alleviate these problems. This type of modeling is important for designing and optimizing the DMFC for specific applications like portable electronics. Understanding the losses within the DMFC like removable of carbon dioxide, conversion losses, and methanol crossover from the anode to the cathode will help the DMFC become more commercially viable. The model is based on two phase flow in porous media combined with equilibrium between phases in a porous media with contributions from a capillary pressure difference. The effect of the physical parameters of the fuel cell like the thickness, permeability, and contact angle as well as the operating conditions like the temperature and methanol feed concentration, have on the performance of the DMFC during operation will be investigated. This will show how to remove the gas phase from the anode while enabling methanol to reach the catalyst layer and minimizing methanol crossover.text2011-02-16T16:55:06Z2011-02-16T16:55:24Z2011-02-16T16:55:06Z2011-02-16T16:55:24Z2010-122011-02-16December 20102011-02-16T16:55:24Zthesisapplication/pdfhttp://hdl.handle.net/2152/ETD-UT-2010-12-2071eng |
collection |
NDLTD |
language |
English |
format |
Others
|
sources |
NDLTD |
topic |
DMFC Anode Direct methanol fuel cell Fuel cells Fuel cell modeling Phase transport Vapor-liquid equilibrium |
spellingShingle |
DMFC Anode Direct methanol fuel cell Fuel cells Fuel cell modeling Phase transport Vapor-liquid equilibrium Garvin, Joshua Joseph Effect of anode properties on the performance of a direct methanol fuel cell |
description |
This thesis is an investigation of the anode of a direct methanol fuel cell (DMFC) through numerical modeling and simulation. This model attempts to help better understand the two phase flow phenomena in the anode as well as to explain some of the many problems on the anode side of a DMFC and show how changing some of the anode side properties could alleviate these problems. This type of modeling is important for designing and optimizing the DMFC for specific applications like portable electronics. Understanding the losses within the DMFC like removable of carbon dioxide, conversion losses, and methanol crossover from the anode to the cathode will help the DMFC become more commercially viable. The model is based on two phase flow in porous media combined with equilibrium between phases in a porous media with contributions from a capillary pressure difference. The effect of the physical parameters of the fuel cell like the thickness, permeability, and contact angle as well as the operating conditions like the temperature and methanol feed concentration, have on the performance of the DMFC during operation will be investigated. This will show how to remove the gas phase from the anode while enabling methanol to reach the catalyst layer and minimizing methanol crossover. === text |
author |
Garvin, Joshua Joseph |
author_facet |
Garvin, Joshua Joseph |
author_sort |
Garvin, Joshua Joseph |
title |
Effect of anode properties on the performance of a direct methanol fuel cell |
title_short |
Effect of anode properties on the performance of a direct methanol fuel cell |
title_full |
Effect of anode properties on the performance of a direct methanol fuel cell |
title_fullStr |
Effect of anode properties on the performance of a direct methanol fuel cell |
title_full_unstemmed |
Effect of anode properties on the performance of a direct methanol fuel cell |
title_sort |
effect of anode properties on the performance of a direct methanol fuel cell |
publishDate |
2011 |
url |
http://hdl.handle.net/2152/ETD-UT-2010-12-2071 |
work_keys_str_mv |
AT garvinjoshuajoseph effectofanodepropertiesontheperformanceofadirectmethanolfuelcell |
_version_ |
1716821542934937600 |