Synthetic and analytical studies aimed at molecular recognition applications

The creation of small molecule libraries for binding into the NS1A protein of influenza A viruses and the development of an indicator displacement assay for the differentiation of fatty acids are reported herein. Using Mitsunobu chemistry, a variety of structures based on hydroquinone, resorcinol an...

Full description

Bibliographic Details
Main Author: Kubarych, Colin John
Format: Others
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/2152/ETD-UT-2010-05-1260
id ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2010-05-1260
record_format oai_dc
spelling ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-ETD-UT-2010-05-12602015-09-20T16:55:32ZSynthetic and analytical studies aimed at molecular recognition applicationsKubarych, Colin JohnMolecular recognitionFatty acidsIndicator displacement assayThe creation of small molecule libraries for binding into the NS1A protein of influenza A viruses and the development of an indicator displacement assay for the differentiation of fatty acids are reported herein. Using Mitsunobu chemistry, a variety of structures based on hydroquinone, resorcinol and 2,7-dihydroxynaphthalene cores were synthesized. Both polar and non-polar functional groups were added to diversify the cores to help understand which molecule binds best to the protein. Because of poor protein binding, the focus of the project moved to a new lead compound, epigallocatechin-3-gallate (EGCG). EGCG showed promise in computational studies and efforts towards the synthesis of the epigallocatechin core were undertaken. Using a fluorescent indicator displacement assay (IDA), a sensing system for fatty acids was developed. The system consisted of bovine, rabbit, and human serum albumins as host molecules, while the fluorescent indicators were fluorescein, 2-anthracene carboxylic acid, and 1-anilino-8-naphthalene sulfonic acid. Fatty acids were able to be differentiated from one another based on their carbon chain length and the degree of unsaturation. The IDA was then subjected to a complex mixture of fatty acids, in the form of edible oils. The oils (extra virgin olive, hazelnut, peanut, sunflower and canola) with different fatty acid profiles were able to be differentiated from each other using principal component analysis.text2010-10-28T19:02:02Z2010-10-28T19:02:07Z2010-10-28T19:02:02Z2010-10-28T19:02:07Z2010-052010-10-28May 20102010-10-28T19:02:07Zthesisapplication/pdfhttp://hdl.handle.net/2152/ETD-UT-2010-05-1260eng
collection NDLTD
language English
format Others
sources NDLTD
topic Molecular recognition
Fatty acids
Indicator displacement assay
spellingShingle Molecular recognition
Fatty acids
Indicator displacement assay
Kubarych, Colin John
Synthetic and analytical studies aimed at molecular recognition applications
description The creation of small molecule libraries for binding into the NS1A protein of influenza A viruses and the development of an indicator displacement assay for the differentiation of fatty acids are reported herein. Using Mitsunobu chemistry, a variety of structures based on hydroquinone, resorcinol and 2,7-dihydroxynaphthalene cores were synthesized. Both polar and non-polar functional groups were added to diversify the cores to help understand which molecule binds best to the protein. Because of poor protein binding, the focus of the project moved to a new lead compound, epigallocatechin-3-gallate (EGCG). EGCG showed promise in computational studies and efforts towards the synthesis of the epigallocatechin core were undertaken. Using a fluorescent indicator displacement assay (IDA), a sensing system for fatty acids was developed. The system consisted of bovine, rabbit, and human serum albumins as host molecules, while the fluorescent indicators were fluorescein, 2-anthracene carboxylic acid, and 1-anilino-8-naphthalene sulfonic acid. Fatty acids were able to be differentiated from one another based on their carbon chain length and the degree of unsaturation. The IDA was then subjected to a complex mixture of fatty acids, in the form of edible oils. The oils (extra virgin olive, hazelnut, peanut, sunflower and canola) with different fatty acid profiles were able to be differentiated from each other using principal component analysis. === text
author Kubarych, Colin John
author_facet Kubarych, Colin John
author_sort Kubarych, Colin John
title Synthetic and analytical studies aimed at molecular recognition applications
title_short Synthetic and analytical studies aimed at molecular recognition applications
title_full Synthetic and analytical studies aimed at molecular recognition applications
title_fullStr Synthetic and analytical studies aimed at molecular recognition applications
title_full_unstemmed Synthetic and analytical studies aimed at molecular recognition applications
title_sort synthetic and analytical studies aimed at molecular recognition applications
publishDate 2010
url http://hdl.handle.net/2152/ETD-UT-2010-05-1260
work_keys_str_mv AT kubarychcolinjohn syntheticandanalyticalstudiesaimedatmolecularrecognitionapplications
_version_ 1716821007011938304