Flexibility and rigidity of three-dimensional convex projective structures

This thesis investigates various rigidity and flexibility phenomena of convex projective structures on hyperbolic manifolds, particularly in dimension 3. Let M[superscipt n] be a finite volume hyperbolic n-manifold where [mathematical equation] and [mathematical symbol] be its fundamental group. Mos...

Full description

Bibliographic Details
Main Author: Ballas, Samuel Aaron
Format: Others
Language:en_US
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/2152/21681
Description
Summary:This thesis investigates various rigidity and flexibility phenomena of convex projective structures on hyperbolic manifolds, particularly in dimension 3. Let M[superscipt n] be a finite volume hyperbolic n-manifold where [mathematical equation] and [mathematical symbol] be its fundamental group. Mostow rigidity tells us that there is a unique conjugacy class of discrete faithful representation of [mathematical symbol] into PSO(subscript n, 1). In light of this fact we examine when this representations can be non-trivially deformed into the larger Lie group of PGL[subscript n+1](R) as well as the relationship between these deformations and convex projective structures on M. Specifically, we show that various two-bridge knots do not admit such deformations into PGL[subscript 4](R) satisfying certain boundary conditions. We subsequently use this result to show that certain orbifold surgeries on amphicheiral knot complements do admit deformations. === text