Mathematical literacy assessment design : a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics framework

The National Research Council (NRC) outlines an assessment design framework in Knowing What Students Know. This framework proposes the integration of three components in assessment design that can be represented by a triangle, with each corner representing: cognition, or model of student learning in...

Full description

Bibliographic Details
Main Author: Ekmekci, Adem
Format: Others
Language:en_US
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/2152/21338
id ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-21338
record_format oai_dc
spelling ndltd-UTEXAS-oai-repositories.lib.utexas.edu-2152-213382015-09-20T17:16:01ZMathematical literacy assessment design : a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics frameworkEkmekci, AdemMathematicsMathematical literacyAssessmentDimensionalityConstruct validityConfirmatory factor analysisAssessment triangleThe National Research Council (NRC) outlines an assessment design framework in Knowing What Students Know. This framework proposes the integration of three components in assessment design that can be represented by a triangle, with each corner representing: cognition, or model of student learning in the domain; observation, or evidence of competencies; and interpretation, or making sense of this evidence. This triangle representation signifies the idea of a need for interconnectedness, consistency, and integrated development of the three elements, as opposed to having them as isolated from each other. Based on the recommendations for research outlined in the NRC's assessment report, this dissertation aims to conduct a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics items. PISA assesses 15-year olds' skills and competencies in reading, math, and science literacy, implementing an assessment every three years since 2000. PISA's mathematics assessment framework, as proposed by the Organisation for Economic Co-operation and Development (OECD), has a multidimensional structure: content, processes, and context, each having three to four sub-dimensions. The goal of this dissertation is to show how and to what extent this complex multidimensional nature of assessment framework is reflected on the actual tests by investigating the dimensional structure of the PISA 2003, 2006, and 2009 mathematics items through the student responses from all participating OECD countries, and analyzing the correspondence between the mathematics framework and the actual items change over time through these three implementation cycles. Focusing on the cognition and interpretation components of the assessment triangle and the relationship between the two, the results provide evidence addressing construct validity of PISA mathematics assessment. Confirmatory factor analysis (CFA) and structural equation modeling (SEM) were used for a dimensionality analysis of the PISA mathematics items in three different cycles: 2003, 2006, and 2009. Seven CFA models including a unidimensional model, three correlated factor (1-level) models, and three higher order factor (2-level) models were applied to the PISA mathematics items for each cycle. Although the results did not contradict the multidimensionality, stronger evidence was found to support the unidimensionality of the PISA mathematics items. The findings also showed that the dimensional structure of the PISA mathematics items were very stable across different cycles.text2013-09-26T14:29:17Z2013-082013-08-14August 20132013-09-26T14:29:17Zapplication/pdfhttp://hdl.handle.net/2152/21338en_US
collection NDLTD
language en_US
format Others
sources NDLTD
topic Mathematics
Mathematical literacy
Assessment
Dimensionality
Construct validity
Confirmatory factor analysis
Assessment triangle
spellingShingle Mathematics
Mathematical literacy
Assessment
Dimensionality
Construct validity
Confirmatory factor analysis
Assessment triangle
Ekmekci, Adem
Mathematical literacy assessment design : a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics framework
description The National Research Council (NRC) outlines an assessment design framework in Knowing What Students Know. This framework proposes the integration of three components in assessment design that can be represented by a triangle, with each corner representing: cognition, or model of student learning in the domain; observation, or evidence of competencies; and interpretation, or making sense of this evidence. This triangle representation signifies the idea of a need for interconnectedness, consistency, and integrated development of the three elements, as opposed to having them as isolated from each other. Based on the recommendations for research outlined in the NRC's assessment report, this dissertation aims to conduct a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics items. PISA assesses 15-year olds' skills and competencies in reading, math, and science literacy, implementing an assessment every three years since 2000. PISA's mathematics assessment framework, as proposed by the Organisation for Economic Co-operation and Development (OECD), has a multidimensional structure: content, processes, and context, each having three to four sub-dimensions. The goal of this dissertation is to show how and to what extent this complex multidimensional nature of assessment framework is reflected on the actual tests by investigating the dimensional structure of the PISA 2003, 2006, and 2009 mathematics items through the student responses from all participating OECD countries, and analyzing the correspondence between the mathematics framework and the actual items change over time through these three implementation cycles. Focusing on the cognition and interpretation components of the assessment triangle and the relationship between the two, the results provide evidence addressing construct validity of PISA mathematics assessment. Confirmatory factor analysis (CFA) and structural equation modeling (SEM) were used for a dimensionality analysis of the PISA mathematics items in three different cycles: 2003, 2006, and 2009. Seven CFA models including a unidimensional model, three correlated factor (1-level) models, and three higher order factor (2-level) models were applied to the PISA mathematics items for each cycle. Although the results did not contradict the multidimensionality, stronger evidence was found to support the unidimensionality of the PISA mathematics items. The findings also showed that the dimensional structure of the PISA mathematics items were very stable across different cycles. === text
author Ekmekci, Adem
author_facet Ekmekci, Adem
author_sort Ekmekci, Adem
title Mathematical literacy assessment design : a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics framework
title_short Mathematical literacy assessment design : a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics framework
title_full Mathematical literacy assessment design : a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics framework
title_fullStr Mathematical literacy assessment design : a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics framework
title_full_unstemmed Mathematical literacy assessment design : a dimensionality analysis of Programme for International Student Assessment (PISA) mathematics framework
title_sort mathematical literacy assessment design : a dimensionality analysis of programme for international student assessment (pisa) mathematics framework
publishDate 2013
url http://hdl.handle.net/2152/21338
work_keys_str_mv AT ekmekciadem mathematicalliteracyassessmentdesignadimensionalityanalysisofprogrammeforinternationalstudentassessmentpisamathematicsframework
_version_ 1716823186339790848