Functional nanocomposite fibers through electrospinning : flame retardant and superhydrophobic

Flame retardant (FR) intumescent additives and montmorillonite (MMT) organoclay incorporated nylon-6 nanocomposite (FR-NC-PA6) fibers with a diameter of about 200 nm were fabricated by electrospinning. Before electrospinning, dispersion and exfoliation of the FR additive and MMT in nylon-6 were achi...

Full description

Bibliographic Details
Main Author: Wu, Hao
Format: Others
Language:en_US
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/2152/20046
Description
Summary:Flame retardant (FR) intumescent additives and montmorillonite (MMT) organoclay incorporated nylon-6 nanocomposite (FR-NC-PA6) fibers with a diameter of about 200 nm were fabricated by electrospinning. Before electrospinning, dispersion and exfoliation of the FR additive and MMT in nylon-6 were achieved by twin-screw extrusion. Tensile, TGA and UL-94 flammability tests were first performed using injection-molded bulk samples. The tensile modulus of FR-NC-PA6 was 45% higher than that of neat PA6, but tensile strength and elongation at break decreased by 23% and 98.7%, respectively. It is worth noting that although the TGA results show that FR-NC-PA6 has a slightly earlier decomposition temperature than neat PA6, it did not drip under fire and had the best rating (V-0) in UL 94 test, while neat PA6 is only rated as V-2. SEM and EDX of char residues after the UL 94 test clearly show the oxygen-rich protective char layer on the surface. These results indicate the advantage of using clay and FR additive in bulk-form PA6. Flammability of electrospun nanocomposite fibers was characterized by Micro-combustion calorimeter (MCC), a small-scale test to screen flammability of polymer materials. The MCC results show that the nano-fillers in both bulk and fiber form could effectively improve flame retardant properties of the material. Electrospun fibers had similar combustion properties as bulk materials. In addition to FR applications, superhydrophobic surface was another area that was explored using the electrospun nanocomposite fibers. Static water contact angle (WCA) test showed that samples with 5wt% clay even without plasma treatment greatly improved the WCA to 140°, probably due to the barrier effect of nanoclay platelets. Plasma treatment was used to modify the surface energy, further improving WCA to as high as 160°. However, fiber structure was partially etched away when overexposed to the plasma. This etching effect increased the surface roughness. Clay incorporated samples had higher level of surface roughness and better resistance to plasma etching compared to neat nylon 6. === text