Summary: | This research investigates different scenarios of deltaic deposition, both in shelfbreak and ramp settings. I address four ancient cases with particular characteristics: 1) A shelf-margin case from the Eocene Battfjellet Formation, West Spitsbergen, Norway, in which deltas were able to migrate to the shelf-edge during rising and sea-level highstand conditions despite the low-supply character of the system (low progradation/aggradation rates compared to analogous margins), with consequent sand starvation on the slope and deeper areas of the basin. The delta system was overall wave-dominated, with restricted tide-influence at the mouth of the distributaries and more accentuated tide-influence during the transgressive transit of the deltas; 2) A shelf-margin case from the Pliocene paleo-Orinoco Delta System, Mayaro Formation, SE-Trinidad, in which high rates of sediment supply from the paleo-Orinoco River and exceptionally high subsidence rates due to growth-faulting, produced a spectacular stacking of sandstones on the outer shelf and shelf-edge areas, but with apparently limited sand delivery into deeper waters. The delta system was overall storm-wave dominated, with fluvial-influence in the lower segment of the system and some tide-influence in association with the fluvial-influence; 3) A case from a shallow-water ramp, Campanian Rock Springs Formation (Western Interior Seaway), in which deltas accumulated along relatively straight, north-south oriented shorelines highly impacted by wave-storm processes. Tide-influence was limited to the mouth of the distributaries, and fluvial deposits mostly developed within the coastal-plain areas; and 4) A case from the same ramp setting as (3) but in an outer-ramp site, Campanian Haystack Mountains Formation, in which a lowering in sea-level translated the delta system tens of kilometers eastwards into the basin. As a consequence of a shallower and narrower seaway, southerly-oriented tidal currents were enhanced and subsequently skewed or re-aligned the delta system to the south. The key contributions of this research concern (1) the feasibility of shelf-margin accretion during rising and highstand of sea level, (2) the critical importance of shelf width and sediment supply (and not only sea-level behavior) to bring deltas to the shelfedge, and (3) the possible tendency for tides enhancement in the distal reaches of shallow seaway ramps, caused by narrowing of the seaway and fault-topography enhancement during falling sea level. === text
|