Geometrical Effects on Electromagnetic Enhancement to SERS from Metal Nanoparticle Dimer Arrays

Much recent effort has been devoted to the study of the optical properties of metal nanoparticle substrates. In such finely ordered structures, surface plasmons can be induced by incident light. These collective excitations of the electrons in the nanoparticle create localized areas of high electrom...

Full description

Bibliographic Details
Main Author: Gaddis, Abigail Laurel
Format: Others
Published: Trace: Tennessee Research and Creative Exchange 2009
Subjects:
Online Access:http://trace.tennessee.edu/utk_gradthes/78
id ndltd-UTENN-oai-trace.tennessee.edu-utk_gradthes-1107
record_format oai_dc
spelling ndltd-UTENN-oai-trace.tennessee.edu-utk_gradthes-11072011-12-13T16:14:28Z Geometrical Effects on Electromagnetic Enhancement to SERS from Metal Nanoparticle Dimer Arrays Gaddis, Abigail Laurel Much recent effort has been devoted to the study of the optical properties of metal nanoparticle substrates. In such finely ordered structures, surface plasmons can be induced by incident light. These collective excitations of the electrons in the nanoparticle create localized areas of high electromagnetic field intensity. The intense local fields generated are of interest for various applications, including Surface-enhanced Raman Scattering (SERS) for molecular detection and sensing. In this thesis, the optical properties of various nanoparticle dimer and array geometries are considered, including gold triangular prism dimers and silver spherical dimers. The effect of SERS due to electromagnetic interaction of the metal nanoparticles with incident light is computed using the finite-difference time-domain (FDTD) method. These results are compared with those from generalized Mie theory simulations and recent experimental work. The positions, wavelengths, and magnitudes of maximum electric field enhancement for different geometries are presented. These findings may serve as important guidance in future design of nanoplasmonic devices. 2009-08-01 text application/pdf http://trace.tennessee.edu/utk_gradthes/78 Masters Theses Trace: Tennessee Research and Creative Exchange Physics
collection NDLTD
format Others
sources NDLTD
topic Physics
spellingShingle Physics
Gaddis, Abigail Laurel
Geometrical Effects on Electromagnetic Enhancement to SERS from Metal Nanoparticle Dimer Arrays
description Much recent effort has been devoted to the study of the optical properties of metal nanoparticle substrates. In such finely ordered structures, surface plasmons can be induced by incident light. These collective excitations of the electrons in the nanoparticle create localized areas of high electromagnetic field intensity. The intense local fields generated are of interest for various applications, including Surface-enhanced Raman Scattering (SERS) for molecular detection and sensing. In this thesis, the optical properties of various nanoparticle dimer and array geometries are considered, including gold triangular prism dimers and silver spherical dimers. The effect of SERS due to electromagnetic interaction of the metal nanoparticles with incident light is computed using the finite-difference time-domain (FDTD) method. These results are compared with those from generalized Mie theory simulations and recent experimental work. The positions, wavelengths, and magnitudes of maximum electric field enhancement for different geometries are presented. These findings may serve as important guidance in future design of nanoplasmonic devices.
author Gaddis, Abigail Laurel
author_facet Gaddis, Abigail Laurel
author_sort Gaddis, Abigail Laurel
title Geometrical Effects on Electromagnetic Enhancement to SERS from Metal Nanoparticle Dimer Arrays
title_short Geometrical Effects on Electromagnetic Enhancement to SERS from Metal Nanoparticle Dimer Arrays
title_full Geometrical Effects on Electromagnetic Enhancement to SERS from Metal Nanoparticle Dimer Arrays
title_fullStr Geometrical Effects on Electromagnetic Enhancement to SERS from Metal Nanoparticle Dimer Arrays
title_full_unstemmed Geometrical Effects on Electromagnetic Enhancement to SERS from Metal Nanoparticle Dimer Arrays
title_sort geometrical effects on electromagnetic enhancement to sers from metal nanoparticle dimer arrays
publisher Trace: Tennessee Research and Creative Exchange
publishDate 2009
url http://trace.tennessee.edu/utk_gradthes/78
work_keys_str_mv AT gaddisabigaillaurel geometricaleffectsonelectromagneticenhancementtosersfrommetalnanoparticledimerarrays
_version_ 1716390072493801472