Small and Large Scale Limits of Multifractal Stochastic Processes with Applications

Various classes of multifractal processes, that is processes that display different properties at different scales, are studied. Most of the processes examined in this work exhibit stable trends at small scales and Gaussian trends at large scales, although the opposite can also occur. Many natural p...

Full description

Bibliographic Details
Main Author: Sinclair, Jennifer Laurie
Format: Others
Published: Trace: Tennessee Research and Creative Exchange 2009
Subjects:
Online Access:http://trace.tennessee.edu/utk_graddiss/92
id ndltd-UTENN-oai-trace.tennessee.edu-utk_graddiss-1136
record_format oai_dc
spelling ndltd-UTENN-oai-trace.tennessee.edu-utk_graddiss-11362011-12-13T16:00:23Z Small and Large Scale Limits of Multifractal Stochastic Processes with Applications Sinclair, Jennifer Laurie Various classes of multifractal processes, that is processes that display different properties at different scales, are studied. Most of the processes examined in this work exhibit stable trends at small scales and Gaussian trends at large scales, although the opposite can also occur. Many natural phenomena exhibit a fractal structure depending on some scaling factor, such as space or time. Thus, these types of processes have many useful modeling applications, including Biology and Economics. First, generalized tempered stable processes are defined and studied, following the original work on tempered stable processes by Jan Rosinski [16]. Generalized tempered stable processes encompass the modern variations on tempered stable distributions that have been introduced in the field, including "Modified tempered stable distributions [10]," "Layered stable distributions [8]," and "Lamperti stable processes [2]." This work shows generalized tempered stable processes exhibit multifractal properties at different scales in the space of cadlag functions equipped with the Skorokhod topology and investigates other properties, such as series representations and absolute continuity. Next, processes driven by generalized tempered stable processes involving a certain Volterra kernel are defined and short and long term behavior is established, following the work of Houdré and Kawai [7]. Finally, inspired by the work of Pipiras and Taqqu [13], the multifractal behavior of more general infinitely divisible processes is established, based on the Lévy-Itô representation of infinitely divisible processes. Numerous examples are given throughout the entire text to exemplify the strong presence of processes of this type in current literature. 2009-08-01 text application/pdf http://trace.tennessee.edu/utk_graddiss/92 Doctoral Dissertations Trace: Tennessee Research and Creative Exchange Mathematics
collection NDLTD
format Others
sources NDLTD
topic Mathematics
spellingShingle Mathematics
Sinclair, Jennifer Laurie
Small and Large Scale Limits of Multifractal Stochastic Processes with Applications
description Various classes of multifractal processes, that is processes that display different properties at different scales, are studied. Most of the processes examined in this work exhibit stable trends at small scales and Gaussian trends at large scales, although the opposite can also occur. Many natural phenomena exhibit a fractal structure depending on some scaling factor, such as space or time. Thus, these types of processes have many useful modeling applications, including Biology and Economics. First, generalized tempered stable processes are defined and studied, following the original work on tempered stable processes by Jan Rosinski [16]. Generalized tempered stable processes encompass the modern variations on tempered stable distributions that have been introduced in the field, including "Modified tempered stable distributions [10]," "Layered stable distributions [8]," and "Lamperti stable processes [2]." This work shows generalized tempered stable processes exhibit multifractal properties at different scales in the space of cadlag functions equipped with the Skorokhod topology and investigates other properties, such as series representations and absolute continuity. Next, processes driven by generalized tempered stable processes involving a certain Volterra kernel are defined and short and long term behavior is established, following the work of Houdré and Kawai [7]. Finally, inspired by the work of Pipiras and Taqqu [13], the multifractal behavior of more general infinitely divisible processes is established, based on the Lévy-Itô representation of infinitely divisible processes. Numerous examples are given throughout the entire text to exemplify the strong presence of processes of this type in current literature.
author Sinclair, Jennifer Laurie
author_facet Sinclair, Jennifer Laurie
author_sort Sinclair, Jennifer Laurie
title Small and Large Scale Limits of Multifractal Stochastic Processes with Applications
title_short Small and Large Scale Limits of Multifractal Stochastic Processes with Applications
title_full Small and Large Scale Limits of Multifractal Stochastic Processes with Applications
title_fullStr Small and Large Scale Limits of Multifractal Stochastic Processes with Applications
title_full_unstemmed Small and Large Scale Limits of Multifractal Stochastic Processes with Applications
title_sort small and large scale limits of multifractal stochastic processes with applications
publisher Trace: Tennessee Research and Creative Exchange
publishDate 2009
url http://trace.tennessee.edu/utk_graddiss/92
work_keys_str_mv AT sinclairjenniferlaurie smallandlargescalelimitsofmultifractalstochasticprocesseswithapplications
_version_ 1716389752316362752