Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat

Wheat was grown hydroponically for 23 days ( early boot stage) in a controlled environment at NO3- concentrations of 100 and 1000 μ,M and CO2 levels of 360 and 1200 μ,mol mo1-1. Nitrogen consumption and transpiration were measured daily. Tissue nitrogen concentration, total biomass, and percent root...

Full description

Bibliographic Details
Main Author: Ritchie, Karl B.
Format: Others
Published: DigitalCommons@USU 1994
Subjects:
Online Access:https://digitalcommons.usu.edu/etd/6746
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7820&context=etd
id ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-7820
record_format oai_dc
spelling ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-78202019-10-13T05:56:42Z Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat Ritchie, Karl B. Wheat was grown hydroponically for 23 days ( early boot stage) in a controlled environment at NO3- concentrations of 100 and 1000 μ,M and CO2 levels of 360 and 1200 μ,mol mo1-1. Nitrogen consumption and transpiration were measured daily. Tissue nitrogen concentration, total biomass, and percent root mass were measured at harvest. Nitrogen recovery and nitrogen use efficiency were calculated. Elevated CO2 increased nitrogen consumption of the 100 μ,M NO3- treatment by 13.6% and the 1000 μ,M NO3- treatment by 21.3%. These increases were particularly evident during tillering and early grain fill. Whole plant nitrogen, shoot NO3-, and root NO3- concentrations were increased by elevated CO2. High CO2increased biomass by 15% and increased percent root mass by 11 %. Nitrogen recovery and nitrogen use efficiency were similar at both CO2 concentrations. Transpiration (L m-2ground d-1) decreased by 40% in elevated CO2. The 1000 μ,M NO3- treatment consumed more NO3- than did the 100 μ,M NO3- treatment (8.1% in ambient CO2, 15.5% in elevated CO2); this effect was most pronounced during the last 5 days of the experiment (flag leaf emergence and early grain fill). Percent root mass increased as N concentration decreased from 1000 to 100 μ,M. Nitrogen levels did not significantly affect tissue N concentration or biomass. Nitrogen losses increased as N supply increased; an average of 16% of the nitrogen added to the 100 μ,M NO3- treatment was lost, while the 1000 μ,M NO3- treatment lost 21%. Nitrogen use efficiency and transpiration were similar in both nitrogen treatments. 1994-05-01T07:00:00Z text application/pdf https://digitalcommons.usu.edu/etd/6746 https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7820&context=etd Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. All Graduate Theses and Dissertations DigitalCommons@USU nitrogen supply elevated CO2 nitrogen consumption nitrogen loss tissue nitrogen concentration yield hydroponic wheat Plant Sciences
collection NDLTD
format Others
sources NDLTD
topic nitrogen supply
elevated CO2
nitrogen consumption
nitrogen loss
tissue
nitrogen concentration
yield
hydroponic wheat
Plant Sciences
spellingShingle nitrogen supply
elevated CO2
nitrogen consumption
nitrogen loss
tissue
nitrogen concentration
yield
hydroponic wheat
Plant Sciences
Ritchie, Karl B.
Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat
description Wheat was grown hydroponically for 23 days ( early boot stage) in a controlled environment at NO3- concentrations of 100 and 1000 μ,M and CO2 levels of 360 and 1200 μ,mol mo1-1. Nitrogen consumption and transpiration were measured daily. Tissue nitrogen concentration, total biomass, and percent root mass were measured at harvest. Nitrogen recovery and nitrogen use efficiency were calculated. Elevated CO2 increased nitrogen consumption of the 100 μ,M NO3- treatment by 13.6% and the 1000 μ,M NO3- treatment by 21.3%. These increases were particularly evident during tillering and early grain fill. Whole plant nitrogen, shoot NO3-, and root NO3- concentrations were increased by elevated CO2. High CO2increased biomass by 15% and increased percent root mass by 11 %. Nitrogen recovery and nitrogen use efficiency were similar at both CO2 concentrations. Transpiration (L m-2ground d-1) decreased by 40% in elevated CO2. The 1000 μ,M NO3- treatment consumed more NO3- than did the 100 μ,M NO3- treatment (8.1% in ambient CO2, 15.5% in elevated CO2); this effect was most pronounced during the last 5 days of the experiment (flag leaf emergence and early grain fill). Percent root mass increased as N concentration decreased from 1000 to 100 μ,M. Nitrogen levels did not significantly affect tissue N concentration or biomass. Nitrogen losses increased as N supply increased; an average of 16% of the nitrogen added to the 100 μ,M NO3- treatment was lost, while the 1000 μ,M NO3- treatment lost 21%. Nitrogen use efficiency and transpiration were similar in both nitrogen treatments.
author Ritchie, Karl B.
author_facet Ritchie, Karl B.
author_sort Ritchie, Karl B.
title Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat
title_short Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat
title_full Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat
title_fullStr Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat
title_full_unstemmed Influences of Nitrogen Supply and Elevated CO2 on Nitrogen Consumption, Nitrogen Loss, Tissue Nitrogen Concentration, and Yield of Hydroponic Wheat
title_sort influences of nitrogen supply and elevated co2 on nitrogen consumption, nitrogen loss, tissue nitrogen concentration, and yield of hydroponic wheat
publisher DigitalCommons@USU
publishDate 1994
url https://digitalcommons.usu.edu/etd/6746
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7820&context=etd
work_keys_str_mv AT ritchiekarlb influencesofnitrogensupplyandelevatedco2onnitrogenconsumptionnitrogenlosstissuenitrogenconcentrationandyieldofhydroponicwheat
_version_ 1719267437162004480