Geomorphology of the Green River in Dinosaur National Monument

Longitudinal profile , channel cross-section geometry, and depositional patterns of the Green River in its course through the eastern Uinta Mountains are each strongly influenced by river-level geology and tributary sediment delivery processes. We surveyed channel cross sections at 1-km intervals, m...

Full description

Bibliographic Details
Main Author: Grams, Paul E.
Format: Others
Published: DigitalCommons@USU 1997
Subjects:
Online Access:https://digitalcommons.usu.edu/etd/6703
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7763&context=etd
id ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-7763
record_format oai_dc
spelling ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-77632019-10-13T06:09:07Z Geomorphology of the Green River in Dinosaur National Monument Grams, Paul E. Longitudinal profile , channel cross-section geometry, and depositional patterns of the Green River in its course through the eastern Uinta Mountains are each strongly influenced by river-level geology and tributary sediment delivery processes. We surveyed channel cross sections at 1-km intervals, mapped surficial geology , and measured size and characteristics of bed material in order to evaluate the geomorphic organization of the 70- km study reach . Canyon reaches that are of high gradient and narrow channel geometry are associated with the most resistant lithologies exposed at river level and the most frequent occurrences of tributary debris fans. Meandering reaches that are characterized by low gradient and wide channel geometry are associated with river-level lithology that is of moderate to low resistance and very low debris fan frequency. The channel is in contact with bedrock or talus along only 42 percent of the bank length in canyon reaches and there is an alluvial fill of at least 12 m that separates the channe l bed from bedrock at three borehole sites. The influence of lithology primarily operates through the presence of resistant boulders in debris fans that are delivered by debris flows from steep tributaries. The depositional settings created by debris fans consist of (1) channel-margin deposits in the backwater above the debris fan, (2) eddy bars in the zone of recirculating flow below the constriction, and (3) expansion gravel bars in the expansion below the zone of recirculating flow. These fan-eddy complexes are the storage location of about 70 percent, by area, of all fine- and coarse-grained alluvium contained within the canyons above the low-water stage. Immediately adjacent meandering reaches contain an order of magnitude more alluvium by area but have no debris fan-created depositional settings. This study also describes the flood-plain and terrace stratigraphy of the Green River in the eastern Uinta Mountains and changes due to the operations of Aarning Gorge Dam, upstream from the study area. These landforms are vertically aggrading deposits that are longiuidinally correlative throughout the 65-km study reach. The suite of surfaces identified includes a terrace that is inundated by rare pre- or post-dam floods, an intermediate bench that is inundated by rare post-dam floods, and a post-dam flood plain that is inundated by the post-dam mean annual flood. Analysis of historical photographs in the study reach shows that both the intermediate bench and post-dam flood plain are landforms that were not present in any of the 6 years for which photographs were examined between 1871 and 1954. Photographic replications also show that gravel bars consisting of bare gravel in 1922 and earlier photographs are now covered by fine-grained alluvium and vegetation. Decreased gravel-bar mobility is indicated by estimates of critical and average boundary shear stress. Comprehensive surficial geologic mapping of the study area indicates that the bankfull channel has decreased in width by an average of about 20 percent. 1997-05-01T07:00:00Z text application/pdf https://digitalcommons.usu.edu/etd/6703 https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7763&context=etd Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. All Graduate Theses and Dissertations DigitalCommons@USU geomorphology green river Dinosaur National Monument Geology
collection NDLTD
format Others
sources NDLTD
topic geomorphology
green river
Dinosaur National Monument
Geology
spellingShingle geomorphology
green river
Dinosaur National Monument
Geology
Grams, Paul E.
Geomorphology of the Green River in Dinosaur National Monument
description Longitudinal profile , channel cross-section geometry, and depositional patterns of the Green River in its course through the eastern Uinta Mountains are each strongly influenced by river-level geology and tributary sediment delivery processes. We surveyed channel cross sections at 1-km intervals, mapped surficial geology , and measured size and characteristics of bed material in order to evaluate the geomorphic organization of the 70- km study reach . Canyon reaches that are of high gradient and narrow channel geometry are associated with the most resistant lithologies exposed at river level and the most frequent occurrences of tributary debris fans. Meandering reaches that are characterized by low gradient and wide channel geometry are associated with river-level lithology that is of moderate to low resistance and very low debris fan frequency. The channel is in contact with bedrock or talus along only 42 percent of the bank length in canyon reaches and there is an alluvial fill of at least 12 m that separates the channe l bed from bedrock at three borehole sites. The influence of lithology primarily operates through the presence of resistant boulders in debris fans that are delivered by debris flows from steep tributaries. The depositional settings created by debris fans consist of (1) channel-margin deposits in the backwater above the debris fan, (2) eddy bars in the zone of recirculating flow below the constriction, and (3) expansion gravel bars in the expansion below the zone of recirculating flow. These fan-eddy complexes are the storage location of about 70 percent, by area, of all fine- and coarse-grained alluvium contained within the canyons above the low-water stage. Immediately adjacent meandering reaches contain an order of magnitude more alluvium by area but have no debris fan-created depositional settings. This study also describes the flood-plain and terrace stratigraphy of the Green River in the eastern Uinta Mountains and changes due to the operations of Aarning Gorge Dam, upstream from the study area. These landforms are vertically aggrading deposits that are longiuidinally correlative throughout the 65-km study reach. The suite of surfaces identified includes a terrace that is inundated by rare pre- or post-dam floods, an intermediate bench that is inundated by rare post-dam floods, and a post-dam flood plain that is inundated by the post-dam mean annual flood. Analysis of historical photographs in the study reach shows that both the intermediate bench and post-dam flood plain are landforms that were not present in any of the 6 years for which photographs were examined between 1871 and 1954. Photographic replications also show that gravel bars consisting of bare gravel in 1922 and earlier photographs are now covered by fine-grained alluvium and vegetation. Decreased gravel-bar mobility is indicated by estimates of critical and average boundary shear stress. Comprehensive surficial geologic mapping of the study area indicates that the bankfull channel has decreased in width by an average of about 20 percent.
author Grams, Paul E.
author_facet Grams, Paul E.
author_sort Grams, Paul E.
title Geomorphology of the Green River in Dinosaur National Monument
title_short Geomorphology of the Green River in Dinosaur National Monument
title_full Geomorphology of the Green River in Dinosaur National Monument
title_fullStr Geomorphology of the Green River in Dinosaur National Monument
title_full_unstemmed Geomorphology of the Green River in Dinosaur National Monument
title_sort geomorphology of the green river in dinosaur national monument
publisher DigitalCommons@USU
publishDate 1997
url https://digitalcommons.usu.edu/etd/6703
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7763&context=etd
work_keys_str_mv AT gramspaule geomorphologyofthegreenriverindinosaurnationalmonument
_version_ 1719267844873519104