Development and Validation of Forest Habitat Models in the Uinta Mountains, Utah

A significant question currently facing environmental managers is how to accurately and efficiently quantify forest diversity and resources. Numerous studies have demonstrated the use of modern spatial analytical tools , such as geographical information systems (GIS), remote sensing devices, and sta...

Full description

Bibliographic Details
Main Author: Frescino, Tracey S.
Format: Others
Published: DigitalCommons@USU 1998
Subjects:
Online Access:https://digitalcommons.usu.edu/etd/6461
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7620&context=etd
id ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-7620
record_format oai_dc
spelling ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-76202019-10-13T05:59:09Z Development and Validation of Forest Habitat Models in the Uinta Mountains, Utah Frescino, Tracey S. A significant question currently facing environmental managers is how to accurately and efficiently quantify forest diversity and resources. Numerous studies have demonstrated the use of modern spatial analytical tools , such as geographical information systems (GIS), remote sensing devices, and statistical models for predicting the distribution of dominant vegetation cover types. This study examines the ability of generalized additive models (GAMs) to delineate structural diversity in forested ecosystems (specifically the Uinta Mountain Range in Utah) using GIS tools and satellite spectral data, and analyzes the effect of including different forms of satellite data in model construction (i.e., Landsat thematic mapper (TM), advanced very high resolution radiometer (AVHRR), and the GAP Analysis TM-classified map). Based on the assumption that vegetation composition, as well as structural diversity, is a function of environmental gradients, temperature, precipitation, elevation, aspect, slope, and geology were included as independent environmental variables. Probability surface maps were generated for presence of forest , presence of lodgepole pine, basal area of forest trees, percent cover of shrubs, and density of snags. The maps were validated using an independent set of field data collected from the Evanston Ranger District within the Uinta Mountain Range . In general, the models tended to underpredict at large numbers and overpredict at locations that were sampled as having no forest cover. The models predicting the presence of forest and lodgepole pine were 88% and 80% accurate, respectively, within the Evanston Ranger District and an average of 62% of the predictions of basal area, shrub cover , and snag density fell within an approximate 15% deviation from the field validation values . The addition of TM spectral data and the GAP Analysis TM-classified data were found to contribute significantly to the models' predictions, with some contribution from AVHRR data. The methods used in this study provide a systematic approach for delineating structural features within forest habitats, thus offering an efficient spatial tool for making management decisions. 1998-05-01T07:00:00Z text application/pdf https://digitalcommons.usu.edu/etd/6461 https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7620&context=etd Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. All Graduate Theses and Dissertations DigitalCommons@USU development validation forest habitat models unita mountains Forest Sciences
collection NDLTD
format Others
sources NDLTD
topic development
validation
forest habitat models
unita mountains
Forest Sciences
spellingShingle development
validation
forest habitat models
unita mountains
Forest Sciences
Frescino, Tracey S.
Development and Validation of Forest Habitat Models in the Uinta Mountains, Utah
description A significant question currently facing environmental managers is how to accurately and efficiently quantify forest diversity and resources. Numerous studies have demonstrated the use of modern spatial analytical tools , such as geographical information systems (GIS), remote sensing devices, and statistical models for predicting the distribution of dominant vegetation cover types. This study examines the ability of generalized additive models (GAMs) to delineate structural diversity in forested ecosystems (specifically the Uinta Mountain Range in Utah) using GIS tools and satellite spectral data, and analyzes the effect of including different forms of satellite data in model construction (i.e., Landsat thematic mapper (TM), advanced very high resolution radiometer (AVHRR), and the GAP Analysis TM-classified map). Based on the assumption that vegetation composition, as well as structural diversity, is a function of environmental gradients, temperature, precipitation, elevation, aspect, slope, and geology were included as independent environmental variables. Probability surface maps were generated for presence of forest , presence of lodgepole pine, basal area of forest trees, percent cover of shrubs, and density of snags. The maps were validated using an independent set of field data collected from the Evanston Ranger District within the Uinta Mountain Range . In general, the models tended to underpredict at large numbers and overpredict at locations that were sampled as having no forest cover. The models predicting the presence of forest and lodgepole pine were 88% and 80% accurate, respectively, within the Evanston Ranger District and an average of 62% of the predictions of basal area, shrub cover , and snag density fell within an approximate 15% deviation from the field validation values . The addition of TM spectral data and the GAP Analysis TM-classified data were found to contribute significantly to the models' predictions, with some contribution from AVHRR data. The methods used in this study provide a systematic approach for delineating structural features within forest habitats, thus offering an efficient spatial tool for making management decisions.
author Frescino, Tracey S.
author_facet Frescino, Tracey S.
author_sort Frescino, Tracey S.
title Development and Validation of Forest Habitat Models in the Uinta Mountains, Utah
title_short Development and Validation of Forest Habitat Models in the Uinta Mountains, Utah
title_full Development and Validation of Forest Habitat Models in the Uinta Mountains, Utah
title_fullStr Development and Validation of Forest Habitat Models in the Uinta Mountains, Utah
title_full_unstemmed Development and Validation of Forest Habitat Models in the Uinta Mountains, Utah
title_sort development and validation of forest habitat models in the uinta mountains, utah
publisher DigitalCommons@USU
publishDate 1998
url https://digitalcommons.usu.edu/etd/6461
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=7620&context=etd
work_keys_str_mv AT frescinotraceys developmentandvalidationofforesthabitatmodelsintheuintamountainsutah
_version_ 1719267426207531008