Effect of Deposition from Static Test Fires on Corn and Alfalfa

A greenhouse study was conducted to determine the effects of deposition from static rocket test fires on corn and alfalfa. Seeds were germinated in a wide concentration range of depositional material, called test fire soil (TFS). Additionally, the impact of chloride and aluminum, two major component...

Full description

Bibliographic Details
Main Author: Mendenhall, Scout
Format: Others
Published: DigitalCommons@USU 2013
Subjects:
Online Access:https://digitalcommons.usu.edu/etd/1404
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2403&context=etd
id ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-2403
record_format oai_dc
spelling ndltd-UTAHS-oai-digitalcommons.usu.edu-etd-24032019-10-13T05:40:29Z Effect of Deposition from Static Test Fires on Corn and Alfalfa Mendenhall, Scout A greenhouse study was conducted to determine the effects of deposition from static rocket test fires on corn and alfalfa. Seeds were germinated in a wide concentration range of depositional material, called test fire soil (TFS). Additionally, the impact of chloride and aluminum, two major components of test fire soil, on germination was also evaluated. Furthermore, plants were grown in packed columns and exposed to test fire soil, either in the root zone or on foliage. Tissue was weighed and analyzed to compare biomass production and plant composition. Corn and alfalfa exposed to test fire soil in the root zone produced less biomass than controls, but foliar treatment had no effect on biomass production. No kernels were produced by corn exposed to test fire soil in the root zone. Leaves of plants exposed to test fire soil in the root zone accumulated more metals and nutrients than controls, whereas plant tissue treated with test fire soil on the leaves contained only elevated levels of aluminum, although levels were still within reasonable concentrations for plants. Germination of seeds was not affected below 1% test fire soil in soil; however higher concentrations of test fire soil decreased percent germination. Addition of chloride to soil also inhibits germination, but addition of aluminum has no effect on germination percentage. Corn germination was restored in test fire soil leached with 200 mm artificial rainwater. The results of this research contribute information regarding the potential impact of test fire soil from static test fires on crop production. Test fire soil inhibits germination and growth if deposited in the root zone, and even foliar application alters tissue composition. However, plant composition is not altered significantly in terms of feed criteria, and germination can be restored by irrigating the TFS. The effects of test fire soil are attributed to high levels of chloride that induce salt stress. Crop damage may be avoided by conducting static test fires after crops are harvested or providing extra irrigation to soil impacted with the TFS. 2013-05-01T07:00:00Z text application/pdf https://digitalcommons.usu.edu/etd/1404 https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2403&context=etd Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu). All Graduate Theses and Dissertations DigitalCommons@USU aluminum content of alfalfa aluminum content of corn chloride deposition solid rocket motor exhaust Environmental Engineering
collection NDLTD
format Others
sources NDLTD
topic aluminum content of alfalfa
aluminum content of corn
chloride
deposition
solid rocket motor exhaust
Environmental Engineering
spellingShingle aluminum content of alfalfa
aluminum content of corn
chloride
deposition
solid rocket motor exhaust
Environmental Engineering
Mendenhall, Scout
Effect of Deposition from Static Test Fires on Corn and Alfalfa
description A greenhouse study was conducted to determine the effects of deposition from static rocket test fires on corn and alfalfa. Seeds were germinated in a wide concentration range of depositional material, called test fire soil (TFS). Additionally, the impact of chloride and aluminum, two major components of test fire soil, on germination was also evaluated. Furthermore, plants were grown in packed columns and exposed to test fire soil, either in the root zone or on foliage. Tissue was weighed and analyzed to compare biomass production and plant composition. Corn and alfalfa exposed to test fire soil in the root zone produced less biomass than controls, but foliar treatment had no effect on biomass production. No kernels were produced by corn exposed to test fire soil in the root zone. Leaves of plants exposed to test fire soil in the root zone accumulated more metals and nutrients than controls, whereas plant tissue treated with test fire soil on the leaves contained only elevated levels of aluminum, although levels were still within reasonable concentrations for plants. Germination of seeds was not affected below 1% test fire soil in soil; however higher concentrations of test fire soil decreased percent germination. Addition of chloride to soil also inhibits germination, but addition of aluminum has no effect on germination percentage. Corn germination was restored in test fire soil leached with 200 mm artificial rainwater. The results of this research contribute information regarding the potential impact of test fire soil from static test fires on crop production. Test fire soil inhibits germination and growth if deposited in the root zone, and even foliar application alters tissue composition. However, plant composition is not altered significantly in terms of feed criteria, and germination can be restored by irrigating the TFS. The effects of test fire soil are attributed to high levels of chloride that induce salt stress. Crop damage may be avoided by conducting static test fires after crops are harvested or providing extra irrigation to soil impacted with the TFS.
author Mendenhall, Scout
author_facet Mendenhall, Scout
author_sort Mendenhall, Scout
title Effect of Deposition from Static Test Fires on Corn and Alfalfa
title_short Effect of Deposition from Static Test Fires on Corn and Alfalfa
title_full Effect of Deposition from Static Test Fires on Corn and Alfalfa
title_fullStr Effect of Deposition from Static Test Fires on Corn and Alfalfa
title_full_unstemmed Effect of Deposition from Static Test Fires on Corn and Alfalfa
title_sort effect of deposition from static test fires on corn and alfalfa
publisher DigitalCommons@USU
publishDate 2013
url https://digitalcommons.usu.edu/etd/1404
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2403&context=etd
work_keys_str_mv AT mendenhallscout effectofdepositionfromstatictestfiresoncornandalfalfa
_version_ 1719266300460531712