Efficient Adjacency Queries and Dynamic Refinement for Meshfree Methods with Applications to Explicit Fracture Modeling

Meshfree methods provide a more practical approach to solving problems involving large deformation and modeling fracture compared to the Finite Element Method (FEM). However meshfree methods are more computationally intensive compared to FEM, which can limit their practicality in engineering. Meshfr...

Full description

Bibliographic Details
Main Author: Olliff, James
Format: Others
Published: Scholar Commons 2018
Subjects:
Online Access:https://scholarcommons.usf.edu/etd/7344
https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=8541&context=etd
Description
Summary:Meshfree methods provide a more practical approach to solving problems involving large deformation and modeling fracture compared to the Finite Element Method (FEM). However meshfree methods are more computationally intensive compared to FEM, which can limit their practicality in engineering. Meshfree methods also lack a clear boundary definition, restricting available visualization techniques. Determining particle locations and attributes such that a consistent approximation is ensured can be challenging in meshfree methods, especially when employing h-refinement. The primary objective of this work is to address the limitations associated with computational efficiency, meshfree domain discretization, and h-refinement, including both placement of particles as well as determination of particle attributes. To demonstrate the efficacy of these algorithms, a model predicting the failure of laminated composite structures using a meshfree method will be presented.