Robustness of the Within- and Between-Series Estimators to Non-Normal Multiple-Baseline Studies: A Monte Carlo Study

In single-case research, multiple-baseline (MB) design is the most widely used design in practical settings. It provides the opportunity to estimate the treatment effect based on not only within-series comparisons of treatment phase to baseline phase observations, but also time-specific between-seri...

Full description

Bibliographic Details
Main Author: Joo, Seang-Hwane
Format: Others
Published: Scholar Commons 2017
Subjects:
Online Access:http://scholarcommons.usf.edu/etd/6715
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7912&context=etd
id ndltd-USF-oai-scholarcommons.usf.edu-etd-7912
record_format oai_dc
spelling ndltd-USF-oai-scholarcommons.usf.edu-etd-79122017-07-19T05:24:55Z Robustness of the Within- and Between-Series Estimators to Non-Normal Multiple-Baseline Studies: A Monte Carlo Study Joo, Seang-Hwane In single-case research, multiple-baseline (MB) design is the most widely used design in practical settings. It provides the opportunity to estimate the treatment effect based on not only within-series comparisons of treatment phase to baseline phase observations, but also time-specific between-series comparisons of observations from those that have started treatment to those that are still in the baseline. In MB studies, the average treatment effect and the variation of these effects across multiple participants can be estimated using various statistical modeling methods. Recently, two types of statistical modeling methods were proposed for analyzing MB studies: a) within-series model and b) between-series model. The within-series model is a typical two-level multilevel modeling approach analyzing the measurement occasions within a participant, whereas the between-series model is an alternative modeling approach analyzing participants’ measurement occasions at certain time points, where some participants are in the baseline phase and others are in the treatment phase. Parameters of both within- and between-series models are generally estimated with restricted maximum likelihood (ReML) estimation and ReML is developed based on the assumption of normality (Hox, et al., 2010; Raudenbush & Bryk, 2002). However, in practical educational and psychological settings, observed data may not be easily assumed to be normal. Therefore, the purpose of this study is to investigate the robustness of analyzing MB studies with the within- and between-series models when level-1 errors are non-normal. A Monte Carlo study was conducted under the conditions where level-1 errors were generated from non-normal distributions in which skewness and kurtosis of the distribution were manipulated. Four statistical approaches were considered for comparison based on theoretical and/or empirical rationales. The approaches were defined by the crossing of two analytic decisions: a) whether to use a within- or between-series estimate of effect and b) whether to use REML estimation with Kenward-Roger adjustment for inferences or Bayesian estimation and inference. The accuracy of parameter estimation and statistical power and Type I error were systematically analyzed. The results of the study showed the within- and between-series models are robust to the non-normality of the level-1 error variance. Both within- and between-series models estimated the treatment effect accurately and statistical inferences were acceptable. ReML and Bayesian estimations also showed similar results in the current study. Applications and implications for applied and methodology researchers are discussed based on the findings of the study. 2017-04-06T07:00:00Z text application/pdf http://scholarcommons.usf.edu/etd/6715 http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7912&context=etd default Graduate Theses and Dissertations Scholar Commons Multilevel modeling Single-case Non-normality ReML MCMC Statistics and Probability
collection NDLTD
format Others
sources NDLTD
topic Multilevel modeling
Single-case
Non-normality
ReML
MCMC
Statistics and Probability
spellingShingle Multilevel modeling
Single-case
Non-normality
ReML
MCMC
Statistics and Probability
Joo, Seang-Hwane
Robustness of the Within- and Between-Series Estimators to Non-Normal Multiple-Baseline Studies: A Monte Carlo Study
description In single-case research, multiple-baseline (MB) design is the most widely used design in practical settings. It provides the opportunity to estimate the treatment effect based on not only within-series comparisons of treatment phase to baseline phase observations, but also time-specific between-series comparisons of observations from those that have started treatment to those that are still in the baseline. In MB studies, the average treatment effect and the variation of these effects across multiple participants can be estimated using various statistical modeling methods. Recently, two types of statistical modeling methods were proposed for analyzing MB studies: a) within-series model and b) between-series model. The within-series model is a typical two-level multilevel modeling approach analyzing the measurement occasions within a participant, whereas the between-series model is an alternative modeling approach analyzing participants’ measurement occasions at certain time points, where some participants are in the baseline phase and others are in the treatment phase. Parameters of both within- and between-series models are generally estimated with restricted maximum likelihood (ReML) estimation and ReML is developed based on the assumption of normality (Hox, et al., 2010; Raudenbush & Bryk, 2002). However, in practical educational and psychological settings, observed data may not be easily assumed to be normal. Therefore, the purpose of this study is to investigate the robustness of analyzing MB studies with the within- and between-series models when level-1 errors are non-normal. A Monte Carlo study was conducted under the conditions where level-1 errors were generated from non-normal distributions in which skewness and kurtosis of the distribution were manipulated. Four statistical approaches were considered for comparison based on theoretical and/or empirical rationales. The approaches were defined by the crossing of two analytic decisions: a) whether to use a within- or between-series estimate of effect and b) whether to use REML estimation with Kenward-Roger adjustment for inferences or Bayesian estimation and inference. The accuracy of parameter estimation and statistical power and Type I error were systematically analyzed. The results of the study showed the within- and between-series models are robust to the non-normality of the level-1 error variance. Both within- and between-series models estimated the treatment effect accurately and statistical inferences were acceptable. ReML and Bayesian estimations also showed similar results in the current study. Applications and implications for applied and methodology researchers are discussed based on the findings of the study.
author Joo, Seang-Hwane
author_facet Joo, Seang-Hwane
author_sort Joo, Seang-Hwane
title Robustness of the Within- and Between-Series Estimators to Non-Normal Multiple-Baseline Studies: A Monte Carlo Study
title_short Robustness of the Within- and Between-Series Estimators to Non-Normal Multiple-Baseline Studies: A Monte Carlo Study
title_full Robustness of the Within- and Between-Series Estimators to Non-Normal Multiple-Baseline Studies: A Monte Carlo Study
title_fullStr Robustness of the Within- and Between-Series Estimators to Non-Normal Multiple-Baseline Studies: A Monte Carlo Study
title_full_unstemmed Robustness of the Within- and Between-Series Estimators to Non-Normal Multiple-Baseline Studies: A Monte Carlo Study
title_sort robustness of the within- and between-series estimators to non-normal multiple-baseline studies: a monte carlo study
publisher Scholar Commons
publishDate 2017
url http://scholarcommons.usf.edu/etd/6715
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=7912&context=etd
work_keys_str_mv AT jooseanghwane robustnessofthewithinandbetweenseriesestimatorstononnormalmultiplebaselinestudiesamontecarlostudy
_version_ 1718497020349513728