Thermal Fluctuations Tunneling in Doped Conjugated Polymers
The possibility of using conducting polymers as organic alternatives to widely used inorganic materials for thermoelectric (TE) applications has received much attention in the past few decades. Since conducting polymers are generally inefficient compared to inorganic TE materials, research into thei...
Main Author: | |
---|---|
Format: | Others |
Published: |
Scholar Commons
2015
|
Subjects: | |
Online Access: | https://scholarcommons.usf.edu/etd/5586 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=6779&context=etd |
id |
ndltd-USF-oai-scholarcommons.usf.edu-etd-6779 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-USF-oai-scholarcommons.usf.edu-etd-67792019-10-04T05:07:12Z Thermal Fluctuations Tunneling in Doped Conjugated Polymers Stedman, Troy C. The possibility of using conducting polymers as organic alternatives to widely used inorganic materials for thermoelectric (TE) applications has received much attention in the past few decades. Since conducting polymers are generally inefficient compared to inorganic TE materials, research into their underlying transport mechanisms is required to improve their efficiency. We use a model based on the effects of local thermal fluctuations to characterize the transport in conducting polymer composites. With this model, full linear responses for the current and electronic heat current are obtained. From these responses, the local temperature dependent conductivity, electronic contribution to the thermal conductivity, and Seebeck coefficient are extracted and related to those of the composite material through an effective medium theory. The resulting simple expressions for the TE transport properties are easy to use and can improve our understanding of transport in conducting polymers. An example of how to use the model is given for a parabolic tunneling barrier and comparisons to experimental data are also provided. 2015-02-26T08:00:00Z text application/pdf https://scholarcommons.usf.edu/etd/5586 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=6779&context=etd default Graduate Theses and Dissertations Scholar Commons Linear Response Organic Thermoelectricity Transport Physics Polymer Chemistry |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Linear Response Organic Thermoelectricity Transport Physics Polymer Chemistry |
spellingShingle |
Linear Response Organic Thermoelectricity Transport Physics Polymer Chemistry Stedman, Troy C. Thermal Fluctuations Tunneling in Doped Conjugated Polymers |
description |
The possibility of using conducting polymers as organic alternatives to widely used inorganic materials for thermoelectric (TE) applications has received much attention in the past few decades. Since conducting polymers are generally inefficient compared to inorganic TE materials, research into their underlying transport mechanisms is required to improve their efficiency. We use a model based on the effects of local thermal fluctuations to characterize the transport in conducting polymer composites. With this model, full linear responses for the current and electronic heat current are obtained. From these responses, the local temperature dependent conductivity, electronic contribution to the thermal conductivity, and Seebeck coefficient are extracted and related to those of the composite material through an effective medium theory. The resulting simple expressions for the TE transport properties are easy to use and can improve our understanding of transport in conducting polymers. An example of how to use the model is given for a parabolic tunneling barrier and comparisons to experimental data are also provided. |
author |
Stedman, Troy C. |
author_facet |
Stedman, Troy C. |
author_sort |
Stedman, Troy C. |
title |
Thermal Fluctuations Tunneling in Doped Conjugated Polymers |
title_short |
Thermal Fluctuations Tunneling in Doped Conjugated Polymers |
title_full |
Thermal Fluctuations Tunneling in Doped Conjugated Polymers |
title_fullStr |
Thermal Fluctuations Tunneling in Doped Conjugated Polymers |
title_full_unstemmed |
Thermal Fluctuations Tunneling in Doped Conjugated Polymers |
title_sort |
thermal fluctuations tunneling in doped conjugated polymers |
publisher |
Scholar Commons |
publishDate |
2015 |
url |
https://scholarcommons.usf.edu/etd/5586 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=6779&context=etd |
work_keys_str_mv |
AT stedmantroyc thermalfluctuationstunnelingindopedconjugatedpolymers |
_version_ |
1719260235356438528 |