Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary
Alzheimer's disease and other forms of dementia cause cognitive disabilities in the afflicted person. As a result, the person with dementia often requires assistance from a primary caregiver. However, while the caregiver is away from the home they are unaware of the person's status and may...
Main Author: | |
---|---|
Format: | Others |
Published: |
Scholar Commons
2015
|
Subjects: | |
Online Access: | https://scholarcommons.usf.edu/etd/5546 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=6743&context=etd |
id |
ndltd-USF-oai-scholarcommons.usf.edu-etd-6743 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-USF-oai-scholarcommons.usf.edu-etd-67432019-10-04T05:08:14Z Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary O'Brien, Robert Philip Alzheimer's disease and other forms of dementia cause cognitive disabilities in the afflicted person. As a result, the person with dementia often requires assistance from a primary caregiver. However, while the caregiver is away from the home they are unaware of the person's status and may not be able to find out without returning to the home due to dementia's effects on cognition. In this thesis work, a system of embedded devices is presented which tracks a solitary dementia patient in the home in real-time. The system is composed of three main hardware components. Multiple passive and active sensors are strategically placed to monitor the patient. A number of custom battery-powered embedded systems read the sensors and wirelessly transmit the sensor's values. A central computational node collects the wireless transmissions and analyzes the data. Two algorithms were developed that detect the patient's eating activities and location throughout the home from the sensor data. A web-based user interface was designed that allows a primary caregiver to remotely view the patient's status while away from the home. Numerous trials are performed which test the system's ability to monitor the patient's eating activities and location. The positive results of the trials show that the proposed system is able to detect eating patterns as defined by rules and localize in real-time the patient in the home, accurate to a single quadrant of a room. The proposed embedded system is highly affordable and has two novel features, namely eating detection and patient localization accurate to a single quadrant of any room in the home. Both features use sensors installed in the home and do not require the patient to wear any sensors on their person. The state-of-the-art products currently available are able to localize only to a single room without the patient wearing sensors. 2015-03-16T07:00:00Z text application/pdf https://scholarcommons.usf.edu/etd/5546 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=6743&context=etd default Graduate Theses and Dissertations Scholar Commons Caregiving Dementia Microcontroller Printed Circuit Board Wireless Computer Engineering Geriatrics |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Caregiving Dementia Microcontroller Printed Circuit Board Wireless Computer Engineering Geriatrics |
spellingShingle |
Caregiving Dementia Microcontroller Printed Circuit Board Wireless Computer Engineering Geriatrics O'Brien, Robert Philip Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary |
description |
Alzheimer's disease and other forms of dementia cause cognitive disabilities in the afflicted person. As a result, the person with dementia often requires assistance from a primary caregiver. However, while the caregiver is away from the home they are unaware of the person's status and may not be able to find out without returning to the home due to dementia's effects on cognition.
In this thesis work, a system of embedded devices is presented which tracks a solitary dementia patient in the home in real-time. The system is composed of three main hardware components. Multiple passive and active sensors are strategically placed to monitor the patient. A number of custom battery-powered embedded systems read the sensors and wirelessly transmit the sensor's values. A central computational node collects the wireless transmissions and analyzes the data. Two algorithms were developed that detect the patient's eating activities and location throughout the home from the sensor data. A web-based user interface was designed that allows a primary caregiver to remotely view the patient's status while away from the home.
Numerous trials are performed which test the system's ability to monitor the patient's eating activities and location. The positive results of the trials show that the proposed system is able to detect eating patterns as defined by rules and localize in real-time the patient in the home, accurate to a single quadrant of a room.
The proposed embedded system is highly affordable and has two novel features, namely eating detection and patient localization accurate to a single quadrant of any room in the home. Both features use sensors installed in the home and do not require the patient to wear any sensors on their person. The state-of-the-art products currently available are able to localize only to a single room without the patient wearing sensors. |
author |
O'Brien, Robert Philip |
author_facet |
O'Brien, Robert Philip |
author_sort |
O'Brien, Robert Philip |
title |
Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary |
title_short |
Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary |
title_full |
Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary |
title_fullStr |
Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary |
title_full_unstemmed |
Embedded System Design for Real-time Monitoring of Solitary Embedded System Design for Real-time Monitoring of Solitary |
title_sort |
embedded system design for real-time monitoring of solitary embedded system design for real-time monitoring of solitary |
publisher |
Scholar Commons |
publishDate |
2015 |
url |
https://scholarcommons.usf.edu/etd/5546 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=6743&context=etd |
work_keys_str_mv |
AT obrienrobertphilip embeddedsystemdesignforrealtimemonitoringofsolitaryembeddedsystemdesignforrealtimemonitoringofsolitary |
_version_ |
1719260223546327040 |