Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes

The basis of this work is to find how varying the grain size of materials contained in sandbags (sand and crumb rubber) effects the ballistic penetration of the projectiles from both the 7.62x39mm (308-short), and 9mm Luger cartridges. The sandbags were stacked in a pyramidal stacking configuration...

Full description

Bibliographic Details
Main Author: Cole, Robert Paul
Format: Others
Published: Scholar Commons 2010
Subjects:
Online Access:http://scholarcommons.usf.edu/etd/3565
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=4759&context=etd
id ndltd-USF-oai-scholarcommons.usf.edu-etd-4759
record_format oai_dc
spelling ndltd-USF-oai-scholarcommons.usf.edu-etd-47592015-09-30T04:41:18Z Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes Cole, Robert Paul The basis of this work is to find how varying the grain size of materials contained in sandbags (sand and crumb rubber) effects the ballistic penetration of the projectiles from both the 7.62x39mm (308-short), and 9mm Luger cartridges. The sandbags were stacked in a pyramidal stacking configuration according to military specifications in order to simulate a section of a sandbag barrier or redoubt as would be seen on the battlefield. The projectiles were fired at the targets, and the velocity and penetration data was recorded. The results concern both military and civilian applications alike. The 7.62x39 round was found to experience more fragmentation as grain size increased, and was also found to have, on average, the least amount of penetration into the largest grains. The 9mm round was found to suffer negligible deformation in all of the various sizes of materials, and when fired at the two types of materials, showed a steady trend of decreasing penetration depth with increasing grain size. The sand had a wearing effect on the projectiles leaving them scared or fragmented and deformed while the rubber kept the rounds in pristine condition. 2010-10-22T07:00:00Z text application/pdf http://scholarcommons.usf.edu/etd/3565 http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=4759&context=etd default Graduate Theses and Dissertations Scholar Commons Projectile Impact Granular Systems Sandbag Crushing American Studies Arts and Humanities
collection NDLTD
format Others
sources NDLTD
topic Projectile
Impact
Granular Systems
Sandbag
Crushing
American Studies
Arts and Humanities
spellingShingle Projectile
Impact
Granular Systems
Sandbag
Crushing
American Studies
Arts and Humanities
Cole, Robert Paul
Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes
description The basis of this work is to find how varying the grain size of materials contained in sandbags (sand and crumb rubber) effects the ballistic penetration of the projectiles from both the 7.62x39mm (308-short), and 9mm Luger cartridges. The sandbags were stacked in a pyramidal stacking configuration according to military specifications in order to simulate a section of a sandbag barrier or redoubt as would be seen on the battlefield. The projectiles were fired at the targets, and the velocity and penetration data was recorded. The results concern both military and civilian applications alike. The 7.62x39 round was found to experience more fragmentation as grain size increased, and was also found to have, on average, the least amount of penetration into the largest grains. The 9mm round was found to suffer negligible deformation in all of the various sizes of materials, and when fired at the two types of materials, showed a steady trend of decreasing penetration depth with increasing grain size. The sand had a wearing effect on the projectiles leaving them scared or fragmented and deformed while the rubber kept the rounds in pristine condition.
author Cole, Robert Paul
author_facet Cole, Robert Paul
author_sort Cole, Robert Paul
title Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes
title_short Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes
title_full Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes
title_fullStr Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes
title_full_unstemmed Ballistic Penetration of a Sandbagged Redoubt Using Silica Sand and Pulverized Rubber of Various Grain Sizes
title_sort ballistic penetration of a sandbagged redoubt using silica sand and pulverized rubber of various grain sizes
publisher Scholar Commons
publishDate 2010
url http://scholarcommons.usf.edu/etd/3565
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=4759&context=etd
work_keys_str_mv AT colerobertpaul ballisticpenetrationofasandbaggedredoubtusingsilicasandandpulverizedrubberofvariousgrainsizes
_version_ 1716825380808032256