Improving Accuracy in Logarithmic Multiplication using Operand Decomposition
The arithmetic operations such as multiplication and division in binary number system are computationally complex in terms of area, delay and power. Logarithmic Number Systems (LNS) offer a viable alternative combining the simplicity of fixed point number systems and the precision of floating point...
Main Author: | |
---|---|
Format: | Others |
Published: |
Scholar Commons
2005
|
Subjects: | |
Online Access: | https://scholarcommons.usf.edu/etd/893 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1892&context=etd |
id |
ndltd-USF-oai-scholarcommons.usf.edu-etd-1892 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-USF-oai-scholarcommons.usf.edu-etd-18922019-10-04T05:22:17Z Improving Accuracy in Logarithmic Multiplication using Operand Decomposition Venkataraman, Mahalingam The arithmetic operations such as multiplication and division in binary number system are computationally complex in terms of area, delay and power. Logarithmic Number Systems (LNS) offer a viable alternative combining the simplicity of fixed point number systems and the precision of floating point number systems. However, the computations in LNS result in some loss of accuracy and thus, are limited to mostly signal processing applications; where in certain amount of error is tolerable. In LNS, the cost of computations can be tradeoff with the level of accuracy needed. The Mitchell algorithm proposed incite[mitchell], is a simple approach commonly used for logarithmic multiplication. The method involves a high error margin due to a piecewise straight line approximation of the logarithm curve. Thus, several methods have been proposed in the literature for improving the accuracy of Mitchell's algorithm. In this thesis, we propose a new method for improving the accuracy of Mitchell's logarithmic multiplication using operand decomposition. The operand decomposition process decreases the number of bits with the value of '1' in the multiplicands and reduces the amount of approximation. The proposed method brings down the average error percentage of Mitchell's logarithmic multiplication by around 45%. It can be combined with previous methods to further improve the accuracy. Experimental results are presented to show that both the error range and the average error percentage can be significantly improved by using operand decomposition. 2005-03-28T08:00:00Z text application/pdf https://scholarcommons.usf.edu/etd/893 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1892&context=etd default Graduate Theses and Dissertations Scholar Commons Logarithmic number systems Digital signal processing Mitchell's algorithm Convolution Average error percentage American Studies Arts and Humanities |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Logarithmic number systems Digital signal processing Mitchell's algorithm Convolution Average error percentage American Studies Arts and Humanities |
spellingShingle |
Logarithmic number systems Digital signal processing Mitchell's algorithm Convolution Average error percentage American Studies Arts and Humanities Venkataraman, Mahalingam Improving Accuracy in Logarithmic Multiplication using Operand Decomposition |
description |
The arithmetic operations such as multiplication and division in binary number system are computationally complex in terms of area, delay and power. Logarithmic Number Systems (LNS) offer a viable alternative combining the simplicity of fixed point number systems and the precision of floating point number systems. However, the computations in LNS result in some loss of accuracy and thus, are limited to mostly signal processing applications; where in certain amount of error is tolerable. In LNS, the cost of computations can be tradeoff with the level of accuracy needed. The Mitchell algorithm proposed incite[mitchell], is a simple approach commonly used for logarithmic multiplication. The method involves a high error margin due to a piecewise straight line approximation of the logarithm curve. Thus, several methods have been proposed in the literature for improving the accuracy of Mitchell's algorithm.
In this thesis, we propose a new method for improving the accuracy of Mitchell's logarithmic multiplication using operand decomposition. The operand decomposition process decreases the number of bits with the value of '1' in the multiplicands and reduces the amount of approximation. The proposed method brings down the average error percentage of Mitchell's logarithmic multiplication by around 45%. It can be combined with previous methods to further improve the accuracy. Experimental results are presented to show that both the error range and the average error percentage can be significantly improved by using operand decomposition. |
author |
Venkataraman, Mahalingam |
author_facet |
Venkataraman, Mahalingam |
author_sort |
Venkataraman, Mahalingam |
title |
Improving Accuracy in Logarithmic Multiplication using Operand Decomposition |
title_short |
Improving Accuracy in Logarithmic Multiplication using Operand Decomposition |
title_full |
Improving Accuracy in Logarithmic Multiplication using Operand Decomposition |
title_fullStr |
Improving Accuracy in Logarithmic Multiplication using Operand Decomposition |
title_full_unstemmed |
Improving Accuracy in Logarithmic Multiplication using Operand Decomposition |
title_sort |
improving accuracy in logarithmic multiplication using operand decomposition |
publisher |
Scholar Commons |
publishDate |
2005 |
url |
https://scholarcommons.usf.edu/etd/893 https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1892&context=etd |
work_keys_str_mv |
AT venkataramanmahalingam improvingaccuracyinlogarithmicmultiplicationusingoperanddecomposition |
_version_ |
1719260731295137792 |