Summary: | <p> Self-lubricating flow of bitumen froth occurs when water droplets dispersed in the
viscous oil phase form a lubricating layer surrounding a bitumen-rich core in a
commercial pipeline operated by Syncrude Canada Ltd. In this study, self-lubricating
flow was modelled experimentally by shearing water-in-oil emulsions in a Couette cell
device (viscometer). Bitumen and two commercially available lube oils (N-Brightstock
and Shellflex 81 0) were tested. Dispersed phase water concentrations ranged from 10 to
35 wt%.</p>
<p> The ability to produce self-lubricating flow was a function of dispersed phase
water concentration, temperature, oil viscosity, spindle speed and spindle size (gap
width). For tests conducted at constant temperature, the critical spindle speed required
to achieve self-lubricating flow was found to decrease with increasing water
concentration. The critical spindle speed at which self-lubricating flow was achieved
was found to increase with increasing temperature for the emulsions tested. Flow maps
showing the critical spindle speed as a function of temperature indicate a clearly
delineated transition region between viscous (non-lubricating) and self-lubricating flow.</p>
<p> The critical spindle speed required to achieve self-lubricating flow was found to
be similar when the viscosities of different oils were matched by varying the operating
temperature. Self-lubricating flow was achieved with small and medium diameter
spindles but not with the large diameter spindle.</p>
<p> Models of self-lubricating flow in the Couette cell were developed to predict the
thickness of the water layer that forms during self-lubricating flow. The thickness of the
water layer calculated from these models is less than that determined by others for
pipeline flows.</p>
<p> The results of this study indicate that the ability to produce and maintain selflubricated
flow is highly dependent upon water concentration, emulsion temperature
and the continuous phase viscosity. Further studies of these model emulsions using
pipeline flows are required.</p>
|