Design of free flowing granular drains for groundwater containment applications

Many geoenvironmental applications make use of granular drainage layers. Design guidelines for these drains recommend a granular soil that provides for filtration of the adjacent base soil. Filtration criteria have been developed through laboratory studies in which fine soils under a concentrated gr...

Full description

Bibliographic Details
Main Author: Bergerman, Martin
Other Authors: Boulfiza, Mohamed
Format: Others
Language:en
Published: University of Saskatchewan 2011
Subjects:
Online Access:http://library.usask.ca/theses/available/etd-01102011-192840/
id ndltd-USASK-oai-usask.ca-etd-01102011-192840
record_format oai_dc
collection NDLTD
language en
format Others
sources NDLTD
topic fines deposition
filter permeability
groundwater containment
granular drain
soil drain
granular filter
soil filter
base soil
spellingShingle fines deposition
filter permeability
groundwater containment
granular drain
soil drain
granular filter
soil filter
base soil
Bergerman, Martin
Design of free flowing granular drains for groundwater containment applications
description Many geoenvironmental applications make use of granular drainage layers. Design guidelines for these drains recommend a granular soil that provides for filtration of the adjacent base soil. Filtration criteria have been developed through laboratory studies in which fine soils under a concentrated gradient of water are protected from erosion by a filter soil. The primary objective in these studies has been the geotechnical stability of earth-fill structures, while drainage was a secondary consideration. Granular drainage layers have therefore been constructed using fine sand. The subsequent migration of fine soil into these drains has resulted in significant loss in permeability. The main research objective was to develop design criteria for granular drains to be used for long term operation in environmental applications. The secondary objective was to investigate the relationships between grain size distribution of drain materials and clogging by fines. This was done through a laboratory study where changes in permeability were measured in granular soils infiltrated with fines. Lastly, the effect of salinity on fines deposition was also investigated. The hypothesis of the current study is that coarser granular drains minimize the impact of clogging and provides a better alternative to traditional drain designs for long term environmental applications. The laboratory study was performed with three granular drainage soils: a French Drain sand designed using the traditional filter design method, a coarser uniform sand, and a coarser graded sand with approximately 40% gravel sized particles. Three fine soils were used to infiltrate the drainage soils; however, their particle size distributions were not significantly different from one another. The results indicate that the permeability of all three drainage soils could be reduced by approximately one order of magnitude with continuous flow of a high concentration of fines (5 g/L). The permeabilities of the sands were reduced to a lesser extent with a lower concentration of fines. Permeabilities of the graded soils decreased more slowly with a lower concentration of fines, when considering pore volumes of flow. However, the rate of permeability decrease was ultimately influenced by the amount of fines delivered to the sample. A lower concentration of fines did not significantly slow the rate of permeability reduction in the uniform sand. All three sands retained a similar mass of fines (samples were split and fines content measured following each test). Salinity in the pore water did not significantly affect deposition, likely due to the fact that the fines contained a small amount of clay sized particles. When considering that all three drainage soils became clogged with fines during the tests, the coarse soils maintained a relatively high permeability due to the fact that their pre-test permeabilities were high. This information, along with the results from the literature review, has led to the development of recommended new design criteria for granular drains to be used for long-term geoenvironmental applications. Test results from an earlier study found that dispersive soils subject to high gradients can be successfully protected by a filter coarser than the coarse graded soil used in the current study. It therefore follows that a granular soil intended for groundwater collection applications can be made to be coarser than the current accepted practice. A proposed granular drain design band is presented in the current study.
author2 Boulfiza, Mohamed
author_facet Boulfiza, Mohamed
Bergerman, Martin
author Bergerman, Martin
author_sort Bergerman, Martin
title Design of free flowing granular drains for groundwater containment applications
title_short Design of free flowing granular drains for groundwater containment applications
title_full Design of free flowing granular drains for groundwater containment applications
title_fullStr Design of free flowing granular drains for groundwater containment applications
title_full_unstemmed Design of free flowing granular drains for groundwater containment applications
title_sort design of free flowing granular drains for groundwater containment applications
publisher University of Saskatchewan
publishDate 2011
url http://library.usask.ca/theses/available/etd-01102011-192840/
work_keys_str_mv AT bergermanmartin designoffreeflowinggranulardrainsforgroundwatercontainmentapplications
_version_ 1716532612862836736
spelling ndltd-USASK-oai-usask.ca-etd-01102011-1928402013-01-08T16:34:56Z Design of free flowing granular drains for groundwater containment applications Bergerman, Martin fines deposition filter permeability groundwater containment granular drain soil drain granular filter soil filter base soil Many geoenvironmental applications make use of granular drainage layers. Design guidelines for these drains recommend a granular soil that provides for filtration of the adjacent base soil. Filtration criteria have been developed through laboratory studies in which fine soils under a concentrated gradient of water are protected from erosion by a filter soil. The primary objective in these studies has been the geotechnical stability of earth-fill structures, while drainage was a secondary consideration. Granular drainage layers have therefore been constructed using fine sand. The subsequent migration of fine soil into these drains has resulted in significant loss in permeability. The main research objective was to develop design criteria for granular drains to be used for long term operation in environmental applications. The secondary objective was to investigate the relationships between grain size distribution of drain materials and clogging by fines. This was done through a laboratory study where changes in permeability were measured in granular soils infiltrated with fines. Lastly, the effect of salinity on fines deposition was also investigated. The hypothesis of the current study is that coarser granular drains minimize the impact of clogging and provides a better alternative to traditional drain designs for long term environmental applications. The laboratory study was performed with three granular drainage soils: a French Drain sand designed using the traditional filter design method, a coarser uniform sand, and a coarser graded sand with approximately 40% gravel sized particles. Three fine soils were used to infiltrate the drainage soils; however, their particle size distributions were not significantly different from one another. The results indicate that the permeability of all three drainage soils could be reduced by approximately one order of magnitude with continuous flow of a high concentration of fines (5 g/L). The permeabilities of the sands were reduced to a lesser extent with a lower concentration of fines. Permeabilities of the graded soils decreased more slowly with a lower concentration of fines, when considering pore volumes of flow. However, the rate of permeability decrease was ultimately influenced by the amount of fines delivered to the sample. A lower concentration of fines did not significantly slow the rate of permeability reduction in the uniform sand. All three sands retained a similar mass of fines (samples were split and fines content measured following each test). Salinity in the pore water did not significantly affect deposition, likely due to the fact that the fines contained a small amount of clay sized particles. When considering that all three drainage soils became clogged with fines during the tests, the coarse soils maintained a relatively high permeability due to the fact that their pre-test permeabilities were high. This information, along with the results from the literature review, has led to the development of recommended new design criteria for granular drains to be used for long-term geoenvironmental applications. Test results from an earlier study found that dispersive soils subject to high gradients can be successfully protected by a filter coarser than the coarse graded soil used in the current study. It therefore follows that a granular soil intended for groundwater collection applications can be made to be coarser than the current accepted practice. A proposed granular drain design band is presented in the current study. Boulfiza, Mohamed Haug, Moir D. Sharma, Jitendrapal S. Barbour, S. L. Fonstad, Terrance A. University of Saskatchewan 2011-02-25 text application/pdf http://library.usask.ca/theses/available/etd-01102011-192840/ http://library.usask.ca/theses/available/etd-01102011-192840/ en unrestricted I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.