Determination of the Structural Allosteric Inhibitory Mechanism of Dihydrodipicolinate Synthase

Dihydrodipicolinate Synthase (EC 4.3.3.7; DHDPS), the product of the dapA gene, is an enzyme that catalyzes the condensation of pyruvate and S-aspartate-β-semialdehyde (ASA) into dihydrodipicolinate via an unstable heterocyclic intermediate, (4S)-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. DH...

Full description

Bibliographic Details
Other Authors: Sanders, David A.
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10388/ETD-2015-11-2317
id ndltd-USASK-oai-ecommons.usask.ca-10388-ETD-2015-11-2317
record_format oai_dc
spelling ndltd-USASK-oai-ecommons.usask.ca-10388-ETD-2015-11-23172016-04-07T05:20:27ZDetermination of the Structural Allosteric Inhibitory Mechanism of Dihydrodipicolinate Synthaseprotein crystallographyantibiotic drug designDHDPSdihydrodipicolinate synthaseAllosteryCampylobacter jejuniDihydrodipicolinate Synthase (EC 4.3.3.7; DHDPS), the product of the dapA gene, is an enzyme that catalyzes the condensation of pyruvate and S-aspartate-β-semialdehyde (ASA) into dihydrodipicolinate via an unstable heterocyclic intermediate, (4S)-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. DHDPS catalyzes the first committed step in the biosynthesis of ʟ-lysine and meso-diaminopimelate; each of which is a necessary cross-linking component between peptidoglycan heteropolysacharide chains of bacterial cell walls. Therefore, strong inhibition of DHDPS would result in disruption of meso-diaminopimelate and ʟ-lysine biosynthesis in bacteria leading to decreased bacterial growth and cell lysis. Much attention has been given to targeting the active site for inhibition; however DHDPS is subject to natural feedback inhibition by ʟ-lysine at an allosteric site. In DHDPS from Campylobacter jejuni ʟ-lysine is known to act as a partial uncompetitive inhibitor with respect to pyruvate and a partial mixed inhibitor with respect to ASA. Little is known about how the protein structure facilitates the natural inhibition mechanism and mode of allosteric signal transduction. This work presents ten high resolution crystal structures of Cj-DHDPS and the mutant Y110F-DHDPS with various substrates and inhibitors, including the first reported structure of DHDPS with ASA bound to the active site. As a body of work these structures reveal residues and conformational changes which contribute to the inhibition of the enzyme. Understanding these structure function relationships will be valuable for the design of future antibiotic lead compounds. When an inhibitor binds to the allosteric site there is meaningful shrinkage in the solvent accessible volume between 33% and 49% proportional to the strength of inhibition. Meanwhile at the active site the solvent accessible volume increases between 5% and 35% proportional to the strength of inhibition. Furthermore, inhibitor binding at the allosteric site consistently alters the distance between hydroxyls of the catalytic triad (Y137-T47-Y111') which is likely to affect local pKa's. Changes in active site volume and modification of the catalytic triad would inhibit the enzyme during the binding and condensation of ASA. The residues H56, E88, R60 form a network of hydrogen bonds to close the allosteric site around the inhibitor and act as a lid. Comparison of ʟ-lysine and bislysine bound to wt-DHDPS and Y110F-DHDPS indicates that enhanced inhibition of bislysine is most likely due to increased binding strength rather than altering the mechanism of inhibition. When ASA binds to the active site the network of hydrogen bonds among H56, E88 and R60 is disrupted and the solvent accessible volume of the allosteric site expands by 46%. This observation provides some explanation for the reduced affinity of ʟ-lysine in high ASA concentrations. ʟ-Lysine, but not other inhibitors, is found to induce dynamic domain movements in the wt-DHDPS. These domain movements do not appear to be essential to the inhibition of the enzyme but may play a role in cooperativity between monomers or governing protein dynamics. The moving domain connects the allosteric site to the dimer-dimer interface. Several residues at the weak dimer interface have been identified as potentially involved in dimer-dimer communication including: I172, D173, V176, I194, Y196, S200, N201, K234, D238, Y241, N242 and K245. These residues are not among any previously identified as important for formation of the quaternary structure.Sanders, David A.Palmer, David R.2016-01-06T12:00:14Z2016-01-06T12:00:14Z2015-112016-01-05November 2015textthesishttp://hdl.handle.net/10388/ETD-2015-11-2317eng
collection NDLTD
language English
sources NDLTD
topic protein crystallography
antibiotic drug design
DHDPS
dihydrodipicolinate synthase
Allostery
Campylobacter jejuni
spellingShingle protein crystallography
antibiotic drug design
DHDPS
dihydrodipicolinate synthase
Allostery
Campylobacter jejuni
Determination of the Structural Allosteric Inhibitory Mechanism of Dihydrodipicolinate Synthase
description Dihydrodipicolinate Synthase (EC 4.3.3.7; DHDPS), the product of the dapA gene, is an enzyme that catalyzes the condensation of pyruvate and S-aspartate-β-semialdehyde (ASA) into dihydrodipicolinate via an unstable heterocyclic intermediate, (4S)-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. DHDPS catalyzes the first committed step in the biosynthesis of ʟ-lysine and meso-diaminopimelate; each of which is a necessary cross-linking component between peptidoglycan heteropolysacharide chains of bacterial cell walls. Therefore, strong inhibition of DHDPS would result in disruption of meso-diaminopimelate and ʟ-lysine biosynthesis in bacteria leading to decreased bacterial growth and cell lysis. Much attention has been given to targeting the active site for inhibition; however DHDPS is subject to natural feedback inhibition by ʟ-lysine at an allosteric site. In DHDPS from Campylobacter jejuni ʟ-lysine is known to act as a partial uncompetitive inhibitor with respect to pyruvate and a partial mixed inhibitor with respect to ASA. Little is known about how the protein structure facilitates the natural inhibition mechanism and mode of allosteric signal transduction. This work presents ten high resolution crystal structures of Cj-DHDPS and the mutant Y110F-DHDPS with various substrates and inhibitors, including the first reported structure of DHDPS with ASA bound to the active site. As a body of work these structures reveal residues and conformational changes which contribute to the inhibition of the enzyme. Understanding these structure function relationships will be valuable for the design of future antibiotic lead compounds. When an inhibitor binds to the allosteric site there is meaningful shrinkage in the solvent accessible volume between 33% and 49% proportional to the strength of inhibition. Meanwhile at the active site the solvent accessible volume increases between 5% and 35% proportional to the strength of inhibition. Furthermore, inhibitor binding at the allosteric site consistently alters the distance between hydroxyls of the catalytic triad (Y137-T47-Y111') which is likely to affect local pKa's. Changes in active site volume and modification of the catalytic triad would inhibit the enzyme during the binding and condensation of ASA. The residues H56, E88, R60 form a network of hydrogen bonds to close the allosteric site around the inhibitor and act as a lid. Comparison of ʟ-lysine and bislysine bound to wt-DHDPS and Y110F-DHDPS indicates that enhanced inhibition of bislysine is most likely due to increased binding strength rather than altering the mechanism of inhibition. When ASA binds to the active site the network of hydrogen bonds among H56, E88 and R60 is disrupted and the solvent accessible volume of the allosteric site expands by 46%. This observation provides some explanation for the reduced affinity of ʟ-lysine in high ASA concentrations. ʟ-Lysine, but not other inhibitors, is found to induce dynamic domain movements in the wt-DHDPS. These domain movements do not appear to be essential to the inhibition of the enzyme but may play a role in cooperativity between monomers or governing protein dynamics. The moving domain connects the allosteric site to the dimer-dimer interface. Several residues at the weak dimer interface have been identified as potentially involved in dimer-dimer communication including: I172, D173, V176, I194, Y196, S200, N201, K234, D238, Y241, N242 and K245. These residues are not among any previously identified as important for formation of the quaternary structure.
author2 Sanders, David A.
author_facet Sanders, David A.
title Determination of the Structural Allosteric Inhibitory Mechanism of Dihydrodipicolinate Synthase
title_short Determination of the Structural Allosteric Inhibitory Mechanism of Dihydrodipicolinate Synthase
title_full Determination of the Structural Allosteric Inhibitory Mechanism of Dihydrodipicolinate Synthase
title_fullStr Determination of the Structural Allosteric Inhibitory Mechanism of Dihydrodipicolinate Synthase
title_full_unstemmed Determination of the Structural Allosteric Inhibitory Mechanism of Dihydrodipicolinate Synthase
title_sort determination of the structural allosteric inhibitory mechanism of dihydrodipicolinate synthase
publishDate 2016
url http://hdl.handle.net/10388/ETD-2015-11-2317
_version_ 1718216218972782592